Multiple primary lung cancer (MPLC) remains a tough challenge to diagnose and treat. Although neoadjuvant immunotherapy has shown promising results in early stage non-small cell lung cancer, whether such modality can benefit all primary lesions remains unclear. Herein, we performed integrated multiomics analysis in one patient with early stage MPLC with remarkable tumor shrinkage in a solid nodule and no response in two subsolid nodules after treatment with three cycles of neoadjuvant pembrolizumab. Genomic heterogeneity was observed among responding nodules with high levels of infiltrating CD8 and CD68 immune cells. Substantially downregulated human leukocyte antigen (HLA)-related genes and impaired T lymphocyte function were observed in non-responding nodules. A larger proportion of infiltrating tissue resident memory T cells (Trm) along with high T cell receptor repertoire clonality in responding nodules were validated as predictive and prognostic biomarkers in multiple cancer types using external public datasets. These results suggested that neoadjuvant programmed death 1 (PD-1)/programmed death ligand 1 inhibitors alone may not be an optimal therapeutic strategy for MPLC due to disparities in genomic alterations and immune microenvironment among different lesions. Additionally, we postulate that increased infiltration of Trm may be a unique marker of early immune responses to PD-1 blockade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025811PMC
http://dx.doi.org/10.1136/jitc-2020-002312DOI Listing

Publication Analysis

Top Keywords

multiomics analysis
8
multiple primary
8
primary lung
8
neoadjuvant immunotherapy
8
lung cancer
8
early stage
8
responding nodules
8
analysis reveals
4
reveals distinct
4
distinct response
4

Similar Publications

Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.

View Article and Find Full Text PDF

Background: Primary pulmonary lymphoepithelial carcinoma (pLEC) is a subtype of non-small cell lung cancer (NSCLC) characterized by Epstein-Barr virus (EBV) infection. However, the molecular pathogenesis of pLEC remains poorly understood.

Methods: In this study, we explored pLEC using whole-exome sequencing (WES) and RNA-whole-transcriptome sequencing (RNA-seq) technologies.

View Article and Find Full Text PDF

Identification of EXPA4 as a key gene in cotton salt stress adaptation through transcriptomic and coexpression network analysis of root tip protoplasts.

BMC Plant Biol

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.

Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.

View Article and Find Full Text PDF

Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.

Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!