The optical absorptance from arrays of GaAs nanowires (NWs) was examined by the finite element method. Absorptance in cylindrical NWs, frustum nanocones (with base wider than the top) and inverted frustum nanocones (with top wider than the base) was compared. The introduction of higher order HE modes, the red-shift of the HE modes along the NW length due to NW tapering, and the red-shift of the modes due to increase of the overall NW diameter all contribute to a broadening of the absorption spectrum in conical NWs as compared to NWs with a constant diameter. The optical reflectance versus NW top diameter shows a minimum due to a balance between reflectance from the top of the NWs and reflectance from the substrate between NWs. The optimum geometry for photovoltaic energy conversion was determined from the total photocurrent. An optimum photocurrent of 26.5 mAcm was obtained, corresponding to a conical NW morphology with base diameter of 200 nm, top diameter of 110 nm, and length of 2000 nm. An optimized inverse tapered conical morphology gave comparable performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.419535 | DOI Listing |
The optical absorptance from arrays of GaAs nanowires (NWs) was examined by the finite element method. Absorptance in cylindrical NWs, frustum nanocones (with base wider than the top) and inverted frustum nanocones (with top wider than the base) was compared. The introduction of higher order HE modes, the red-shift of the HE modes along the NW length due to NW tapering, and the red-shift of the modes due to increase of the overall NW diameter all contribute to a broadening of the absorption spectrum in conical NWs as compared to NWs with a constant diameter.
View Article and Find Full Text PDFNanophotonics
January 2020
Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA.
The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!