We report the spatiotemporal mode-locked multimode fiber laser operating at 1.55 µm based on semiconductor saturable absorber mirrors with the mode-locking threshold as low as 104 mW. Benefiting from the multimode interference filtering effect introduced in the laser cavity not only the central wavelength can be continuously tuned from 1557 nm to 1567 nm, but also the number of the output pulses can be adjusted from 1 to 4 by simply adjusting the polarization controllers. This work provides a new platform for exploring the dynamic characteristics of spatiotemporal mode-locked pulses at negative dispersion regime. Moreover, this kind of tunable laser has potential applications in fields of all-optical signal processing, fiber sensing and information coding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.415318 | DOI Listing |
An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.
View Article and Find Full Text PDFThis paper presents the experimental observation of the transition from stationary spatiotemporal soliton (STS) to spatiotemporal soliton pulsation (STSP) in spatiotemporal mode-locked fiber lasers for the first time. Three STSs maintain an asynchronous pulsating state with the same period, while another STS remains in a stationary mode-locked state. Through numerical analysis, the dynamic transition process of STS to STSP is studied.
View Article and Find Full Text PDFMicromachines (Basel)
May 2024
Department of Electrical Electronic and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
In this article, we demonstrate a high-energy, wide-spectrum, spatiotemporal mode-locked (STML) fiber laser. Unlike traditional single-mode fiber lasers, STML fiber lasers theoretically enable mode-locking with various combinations of transverse modes. The laser can deliver two different STML pulse sequences with different pulse widths, spectra and beam profiles, due to the different compositions of transverse modes in the output pulses.
View Article and Find Full Text PDFSci Rep
April 2024
Institut de Physique de Nice, Université Côte d'Azur, CNRS, 06560, Valbonne, France.
We show that nearly-degenerate Vertical External-Cavity Surface-Emitting Lasers may emit a set of tilted beams of individually addressable mode-locked pulses. These time localized beams feature a Gaussian profile and they are emitted in pairs with opposite transverse k-vector. Because they are phase locked, their interference leads to a non homothetic pattern in the near-field emission of the laser.
View Article and Find Full Text PDFSpatiotemporal mode-locked (STML) fiber lasers have become a new platform for investigating nonlinear phenomena. In this work, spatiotemporal dual-periodic soliton pulsation (SDSP) is firstly observed in an STML fiber laser. It is found that in the SDSP, the long-period pulsations (LPPs) of different transverse modes are synchronous, while the short-period pulsations (SPPs) exhibit asynchronous modulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!