A focus calibration method is developed to determine the focus position of a grating alignment system. An illumination beam scanning module is utilized to generate a circular motion for the beam, which forms an angular modulation interference image on the reference mark. A theoretical model is presented to determine the focus by determining the alignment grating z-position, at which the alignment offset is independent of the incident beam tilt. The standard uncertainty of the focus calibration results is estimated to be better than 150 nm. This technique may improve the measurement performance for lithography systems and precision machine applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.420761 | DOI Listing |
Math Biosci
January 2025
Maxwell Institute for Mathematical Sciences, The University of Edinburgh and Heriot-Watt University, Bayes Centre, Edinburgh, Scotland, UK; School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, Edinburgh, Scotland, UK. Electronic address:
We consider a numerical framework tailored to identifying optimal parameters in the context of modelling disease propagation. Our focus is on understanding the behaviour of optimisation algorithms for such problems, where the dynamics are described by a system of ordinary differential equations associated with the epidemiological SIRD model. Applying an optimise-then-discretise approach, we examine properties of the solution operator and determine existence of optimal parameters for the problem considered.
View Article and Find Full Text PDFProcess-based models for range dynamics are urgently needed due to increasing intensity of human-induced biodiversity change. Despite a few existing models that focus on demographic processes, their use remains limited compared to the widespread application of correlative approaches. This slow adoption is largely due to the challenges in calibrating biological parameters and the high computational demands for large-scale applications.
View Article and Find Full Text PDFBr J Radiol
January 2025
Radiotherapy Physics Dept, Ipswich Hospital, Ipswich, Suffolk, IP45PD, UK.
Objectives: To survey kilovoltage (kV) radiotherapy in the UK, updating a 2016 study, focussing on radiotherapy physics, including equipment quality control (QC) and radiation dosimetry, with information on installed equipment and clinical activity.
Methods: All UK radiotherapy physics departments (n = 68) were invited to complete a comprehensive survey. An analysis of the installed equipment base, patient numbers, clinical activity, QC testing and radiation dosimetry processes were undertaken.
Patient Saf Surg
January 2025
Department of Surgery, University of Virginia, Charlottesville, Virginia, USA.
Background: While existing risk calculators focus on mortality and complications, elderly patients are concerned with how operations will affect their quality of life, especially their independence. We sought to develop a novel clinically relevant and easy-to-use score to predict elderly patients' loss of independence after gastrointestinal surgery.
Methods: This retrospective cohort study included patients age ≥ 65 years enrolled in the American College of Surgeons National Surgical Quality Improvement Program database and Geriatric Pilot Project who underwent pancreatic, colorectal, or hepatic surgery (January 1, 2014- December 31, 2018).
Phys Med
January 2025
Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale, IRCCS di Napoli, 80131 Naples, Italy.
Purpose: To study the application of radiomics in cancer imaging with a focus on lung cancer, renal cell carcinoma, gastrointestinal cancer, and head and neck cancer.
Methods: Different electronic databases were considered. Articles published in the last five years were analyzed (January 2019 and December 2023).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!