Hyperspectral imaging that obtains the spatial-spectral information of a scene has been extensively applied in various fields but usually requires a complex and costly system. A single-pixel detector based hyperspectral system mitigates the complexity problem but simultaneously brings new difficulties on the spectral dispersion device. In this work, we propose a low-cost compressive single-pixel hyperspectral imaging system with RGB sensors. Based on the structured illumination single-pixel imaging configuration, the lens-free system directly captures data by the RGB sensors without dispersion in the spectral dimension. The reconstruction is performed with a pre-trained spatial-spectral dictionary, and the hyperspectral images are obtained through compressive sensing. In addition, the spatial patterns for the structured illumination and the dictionary for the sparse representation are optimized by coherence minimization, which further improve the reconstruction quality. In both spatial and spectral dimensions, the intrinsic sparse properties of the hyperspectral images are made full use of for high sampling efficiency and low reconstruction cost. This work may introduce opportunities for optimization of computational imaging systems and reconstruction algorithms towards high speed, high resolution, and low cost future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.416388 | DOI Listing |
Sci Rep
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/ Geldo. Edificio 700, E-48160, Derio - Bizkaia, Spain; University of the Basque Country, Plaza Torres Quevedo, 48013 Bilbao, Spain.
Hyperspectral imaging, a rapidly evolving field, has witnessed the ascendancy of deep learning techniques, supplanting classical feature extraction and classification methods in various applications. However, many researchers employ arbitrary architectures for hyperspectral image processing, often without rigorous analysis of the interplay between spectral and spatial information. This oversight neglects the implications of combining these two modalities on model performance, consumption, and inference time.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
Band selection is a common approach to reduce the data dimensionality of hyperspectral imagery. It extracts several bands of importance in some sense by taking advantage of high spectral correlation. In medical imaging, narrow-band imaging (NBI) is an imaging technique for endoscopic diagnostic medical tests, where light of specific blue and green wavelengths is used to enhance the detail of certain aspects of the surface of the mucosa.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Moisture content (MC) is crucial for the storage, transportation, and processing of Camellia oleifera seeds. The purpose of this study was to investigate the feasibility for detecting MC in Camellia oleifera seeds using visible near-infrared hyperspectral imaging (VNIR-HSI) (374.98 ∼ 1038.
View Article and Find Full Text PDFFood Chem
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China. Electronic address:
Grains and oilseeds, including maize, wheat, and peanuts, are essential for human and animal nutrition but are vulnerable to contamination by fungi and their toxic metabolites, mycotoxins. This review provides a comprehensive investigation of the applications of hyperspectral imaging (HSI) technologies for the detection of fungal and mycotoxins contamination in grains and oilseeds. It explores the capability of HSI to identify specific spectral features of contamination and emphasized the critical role of sample properties and sample preparation techniques in HSI applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!