Optical microcavities are capable of confining light to a small volume, which could dramatically enhance the light-matter interactions and hence improve the performances of photonic devices. However, in the previous works on the emergent properties with photonic molecules composed of multiple plasmonic microcavities, the underlying physical mechanism is unresolved, thereby imposing an inevitable restriction on manipulating degenerate modes in microcavity with outstanding performance. Here, we demonstrate the mode-mode interaction mechanism in photonic molecules composed of degenerate-mode cavity and single-mode cavity through utilizing the coupled mode theory. Numerical and analytical results further elucidate that the introduction of direct coupling between the degenerate-mode cavity and single-mode cavity can lift the mode degeneracy and give rise to the mode splitting, which contributes to single Fano resonance and dual EIT-like effects in the double-cavity photonic molecule structure. Four times the optical delay time compared to typical double-cavity photonic molecule are achieved after removing the mode degeneracy. Besides, with the preserved mode degeneracy, ultra-wide filtering bandwidth and high peak transmission is obtained in multiple-cavity photonic molecules. Our results provide a broad range of applications for ultra-compact and multifunction photonic devices in highly integrated optical circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.420462 | DOI Listing |
We propose a method to convert fundamental modes into orbital angular momentum (OAM) modes through chiral dynamics induced by gauge fluxes in silicon waveguides. By integrating a trench into a few-mode waveguide, we induce the rotation of TE and TE modes, naturally generating the gauge flux for the synthesized OAM modes. By precisely controlling the gauge flux, we achieve chiral dynamics that optimize the conversion efficiency of OAM modes at specific propagation distances, addressing challenges posed by mode degeneracy.
View Article and Find Full Text PDFNano Lett
November 2024
Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, People's Republic of China.
Rev Sci Instrum
October 2024
Université Paris-Saclay, CNRS/IN3P3, IJCLab, 91405 Orsay, France.
The innovative mechanism of steady-state microbunching (SSMB) promises a potent light source, featuring high repetition rate and coherent radiation. The laser modulator, comprising an undulator and an optical enhancement cavity, is pivotal in SSMB. A high-finesse prototype optical enhancement cavity for SSMB with an average power of 55 kW is described in this paper.
View Article and Find Full Text PDFNat Commun
September 2024
School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
We present a new scheme for Majorana modes in systems with nonsymmorphic-symmetry-protected band degeneracy. We reveal that when the gapless fermionic excitations are encoded with conventional superconductivity and magnetism, which can be intrinsic or induced by proximity effect, topological superconductivity and Majorana modes can be obtained. We illustrate this outcome in a system which respects the space group P4/nmm and features a fourfold-degenerate fermionic mode at (π, π) in the Brillouin zone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!