The dynamic focusing characteristics of linearly polarized ultrashort pulses are studied. Both the complex source-sink model (CSSM) and the Richards-Wolf diffraction integral theory (RWT) are used to study the focusing phenomena. For the central focus spot, the descriptions of both the CSSM and the RWT are well consistent. Also, the CSSM can describe the super-resolution focused spot very conveniently, and only the beam waist parameters need to be changed. The dynamic convergence and divergence focusing phenomena of linearly polarized ultrashort pulse are studied by both the CSSM and RWT. The numerical simulation results of both the CSSM and the RWT are not consistent. In the convergent focusing process, there are dynamic focusing phenomena transitions from the halo to two light lobes to the elliptical focus spot. In the divergent defocusing process, the phenomena are the inverse process of the phenomena in the focusing process. The peak power of halos versus the beam convergence angles are studied. The specific angles corresponding to the significantly reduced peak powers of halos are given. These studies may be applied in the field of particle manipulation and acceleration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.421275DOI Listing

Publication Analysis

Top Keywords

linearly polarized
12
polarized ultrashort
12
focusing phenomena
12
cssm rwt
12
focusing characteristics
8
characteristics linearly
8
ultrashort pulses
8
dynamic focusing
8
focus spot
8
focusing process
8

Similar Publications

We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials.

View Article and Find Full Text PDF

Broadband and large surface enhancements of the local electric field enabled by cross-etched hyperbolic metamaterials.

Nanoscale

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!