As an essential element for quantum information processing and quantum communication, efficient quantum memory based on solid-state platforms is imperative for practical applications but remains a challenge. Here we propose a scheme to realize a highly efficient and controllable storage and routing of single photons based on quantum dots (QDs) with a Rashba spin-orbit coupling (SOC). We show that the SOC in the QDs can provide a flexible built-up of electromagnetically induced transparency (EIT) for single-photon propagation, and storage, retrieval, as well as routing of single-photon wavepackets can also be implemented through the EIT. Moreover, we demonstrate that the propagation loss of the single-photon wavepackets in the QDs may be largely suppressed by means of a weak microwave field, by which the storage and routing of the single photons can be made to have high efficiency and fidelity. Our research opens a route for designs of advanced solid-state devices promising for applications in photonic quantum-information processing and transmission based on the QDs with SOC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.416791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!