A horizontal test facility is set up at the Raja Ramanna Centre for Advanced Technology to test the superconducting radio frequency dressed cavities. Along with the cryomodule, control instrumentation, and the power coupler, this facility incorporates a high-power solid-state amplifier for establishing the desired cavity voltage gradient during the testing. This article describes the design, construction, rigorous testing, and measured results of this high-power solid-state radio frequency amplifier and its constituent components. Its maximum output power is 36 kW (average) at the operating frequency of 650 MHz. Its main features are its modular and scalable design with in-house developed constituent components. These components include 500 W, 20 dB gain modules, novel two-tier radial dividers, combiners, power sensors, and aperture-coupled directional couplers. Their excellent reprise performance for the multiple quantities confirms the design methodology presented here. The measured wall plug efficiency of this 36 kW amplifier is 43.6%, and its power gain is 86 dB. The designed radial combiner is highly efficient (power-combining efficiency of 98.4%), and the directional coupler exhibits a very low loss (insertion loss of 0.05 dB).

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0030896DOI Listing

Publication Analysis

Top Keywords

high-power solid-state
12
radio frequency
12
solid-state amplifier
8
superconducting radio
8
test facility
8
constituent components
8
amplifier
4
amplifier superconducting
4
frequency
4
frequency cavity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!