A temperature-controlled electric field sample environment for small-angle neutron scattering experiments.

Rev Sci Instrum

Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straβe des 17. Juni 124, D-10623 Berlin, Germany.

Published: March 2021

A new sample environment is introduced for the study of soft matter samples in electric fields using small-angle neutron scattering instruments. The sample environment is temperature controlled and features external electrodes, allowing standard quartz cuvettes to be used and conducting samples or samples containing ions to be investigated without the risk of electrochemical reactions occurring at the electrodes. For standard 12.5 mm quartz cuvettes, the maximum applied field is 8 kV/cm, and the applied field may be static or alternating (up to 10 kHz for 8 kV/cm and up to 60 kHz for 4 kV/cm). The electric fields within the sample are calculated and simulated under a number of different conditions, and the capabilities of the setup are demonstrated using a variety of liquid crystalline samples. Measurements were performed as a function of temperature and time spent in the electric field. Finally, the advantages, drawbacks, and potential optimization of the sample environment are discussed with reference to applications in the fields of complex soft matter, biology, and electrorheology.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0040675DOI Listing

Publication Analysis

Top Keywords

sample environment
16
electric field
8
small-angle neutron
8
neutron scattering
8
soft matter
8
electric fields
8
quartz cuvettes
8
applied field
8
khz kv/cm
8
sample
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!