Magnetic tweezers with magnetic flux density feedback control.

Rev Sci Instrum

Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA.

Published: March 2021

In this work, we present a single-pole magnetic tweezers (MT) device designed for integration with substrate deformation tracking microscopy and/or traction force microscopy experiments intended to explore extracellular matrix rheology and human epidermal keratinocyte mechanobiology. Assembled from commercially available off-the-shelf electronics hardware and software, the MT device is amenable to replication in the basic biology laboratory. In contrast to conventional solenoid current-controlled MT devices, operation of this instrument is based on real-time feedback control of the magnetic flux density emanating from the blunt end of the needle core using a cascade control scheme and a digital proportional-integral-derivative (PID) controller. Algorithms that compensate for a spatially non-uniform remnant magnetization of the needle core that develops during actuation are implemented into the feedback control scheme. Through optimization of PID gain scheduling, the MT device exhibits magnetization and demagnetization response times of less than 100 ms without overshoot over a wide range of magnetic flux density setpoints. Compared to current-based control, magnetic flux density-based control allows for more accurate and precise magnetic actuation forces by compensating for temperature increases within the needle core due to heat generated by the applied solenoid currents. Near field calibrations validate the ability of the MT device to actuate 4.5 μm-diameter superparamagnetic beads with forces up to 25 nN with maximum relative uncertainties of ±30% for beads positioned between 2.5 and 40 µm from the needle tip.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0039696DOI Listing

Publication Analysis

Top Keywords

magnetic flux
16
flux density
12
feedback control
12
needle core
12
magnetic tweezers
8
control magnetic
8
control scheme
8
magnetic
7
control
6
tweezers magnetic
4

Similar Publications

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

This work reports magnetic field direction dependent second magnetisation peak (SMP) anomaly in single crystals of oxygenated [Formula: see text] for [Formula: see text] ab. Detailed investigations on crystal A revealed the direction dependence of SMP anomaly at temperatures below 25 K, above which the direction dependence vanishes. The state of spatial order of the vortex lattice was found to be correlated to the vortex lattice symmetry that underwent a change at certain fields and was captured via single flux jumps observed in the third and fifth quadrant of magnetisation hysteresis loops.

View Article and Find Full Text PDF

This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.

View Article and Find Full Text PDF

Sinomenine modulates the metabolic reprogramming induced by sepsis via CHRNA7.

Life Sci

December 2024

State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:

Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.

View Article and Find Full Text PDF

Preservation of wetting ridges using field-induced plasticity of magnetoactive elastomers.

J Colloid Interface Sci

December 2024

East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, Seybothstr. 2, Regensburg, 93053, Germany.

Hypothesis: The presence of a wetting ridge is crucial for many wetting phenomena on soft substrates. Conventional experimental observations of a wetting ridge require permanent presence of a droplet. The magnetic field-induced plasticity effect (FIPE) of soft magnetoative elastomers (MAEs) allows one to overcome this limitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!