Three-dimensional reconstruction algorithms have been developed, which determine the hot-spot velocity, hot-spot apparent ion temperature distribution, and fuel areal-density distribution present in laser-direct-drive inertial confinement fusion implosions on the OMEGA laser. These reconstructions rely on multiple independent measurements of the neutron energy spectrum emitted from the fusing plasma. Measurements of the neutron energy spectrum on OMEGA are made using a suite of quasi-orthogonal neutron time-of-flight detectors and a magnetic recoil spectrometer. These spectrometers are positioned strategically around the OMEGA target chamber to provide unique 3D measurements of the conditions of the fusing hot spot and compressed fuel near peak compression. The uncertainties involved in these 3D reconstructions are discussed and are used to identify a new nTOF diagnostic line of sight, which when built will reduce the uncertainty in the hot-spot apparent ion temperature distribution from 700 to <400 eV.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0043514DOI Listing

Publication Analysis

Top Keywords

implosions omega
8
hot-spot apparent
8
apparent ion
8
ion temperature
8
temperature distribution
8
measurements neutron
8
neutron energy
8
energy spectrum
8
reconstructing asymmetries
4
asymmetries laser-direct-drive
4

Similar Publications

Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism.

View Article and Find Full Text PDF

This paper presents a simple physics-based model for the interpretation of key metrics in laser direct drive. The only input parameters required are target scale, in-flight aspect ratio, and beam-to-target radius, and the importance of each has been quantified with a tailored set of cryogenic implosion experiments. These analyses lead to compact and accurate predictions of the fusion yield and areal density as a function of hydrodynamic stability, and they suggest new ways to take advantage of direct drive.

View Article and Find Full Text PDF

A deep-learning convolutional neural network (CNN) is used to infer, from x-ray images along multiple lines of sight, the low-mode shape of the hot-spot emission of deuterium-tritium (DT) laser-direct-drive cryogenic implosions on OMEGA. The motivation of this approach is to develop a physics-informed 3-D reconstruction technique that can be performed within minutes to facilitate the use of the results to inform changes to the initial target and laser conditions for the subsequent implosion. The CNN is trained on a 3D radiation-hydrodynamic simulation database to relate 2D x-ray images to 3D emissivity at stagnation.

View Article and Find Full Text PDF

Neutron time-of-flight (nTOF) spectrometers are essential instruments for measuring and evaluating the performance of inertial confinement fusion implosions. The neutron spectrometers utilized for the OMEGA laser include two liquid-based scintillators, each consisting of a large volume filled with xylene that is coupled to four photomultiplier tubes. Analysis of the signal from these detectors requires detailed knowledge of the scintillator's light output, which is needed to fit the nTOF spectrum, from which the neutron energy spectrum is informed.

View Article and Find Full Text PDF

Optically multiplexed neutron time-of-flight technique for inertial confinement fusion.

Rev Sci Instrum

September 2024

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Neutron time-of-flight (nTOF) detectors are crucial in diagnosing the performance of inertial confinement fusion (ICF) experiments, which implode targets of deuterium-tritium fuel to achieve thermonuclear conditions. These detectors utilize the fusion neutron energy spectrum to extract key measurements, including the hotspot ion temperature and fuel areal density. Previous work [Danly et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!