Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia.

Mar Environ Res

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China. Electronic address:

Published: June 2021

Mudflat shellfish have evolved well-adapted strategies for coping with dynamic environmental fluxes and stressful conditions, including oxygen availability. The Manila clams Ruditapes philippinarum are worldwide cultured shellfish in marine intertidal zone, which usually encounter great risk of acute hypoxia exposure in coastal habitats. To reveal the effects of acute hypoxia on metabolic changes of the clams, we performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites during acute hypoxia stress at the whole-organism level. The comparative transcriptome analysis reveals that the clams show the remarkable depression in a variety of biological performance, such as metabolic rates, neuronal activity, biomineralization activity, and cell proliferation and differentiation at the hypoxic condition. The metabolomic analysis reveals that amino acid metabolism plays a critical role in the metabolic changes of the clams in response to acute hypoxia. A variety of free amino acids may not only be served as the potential osmolytes for osmotic regulation, but also may contribute to energy production during the acute hypoxia exposure. The metabolite analysis also reveals several important biomarkers for metabolic changes, and provides new insights into how clams deal with acute hypoxia. These findings suggest that clams may get through acute hypoxia stress by the adaptive metabolic strategy to survive short-period of acute hypoxia which is likely to occur in their typical habitat. The present findings will not only shed lights on the molecular and metabolic mechanisms of adaptive strategies under stressful conditions, but also provide the signaling metabolites to assess the physiological states of clams in aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2021.105317DOI Listing

Publication Analysis

Top Keywords

acute hypoxia
36
analysis reveals
16
metabolic changes
12
acute
9
hypoxia
9
clams
8
clams acute
8
stressful conditions
8
hypoxia exposure
8
changes clams
8

Similar Publications

The hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a major regulator of adaptive response to hypoxia, common in patients with severe coronavirus disease 2019 (COVID-19). In addition, HIF-1 alpha regulates the expression of the most important proteins necessary for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of cells. The study included 129 hospitalized COVID-19 patients.

View Article and Find Full Text PDF

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).

View Article and Find Full Text PDF

Selective Fetal Growth Restriction Leading to Cerebral Injury in Monochorionic Twins: A Case Report.

Cureus

December 2024

Neonatology Department, Daniel de Matos Maternity, Coimbra Local Health Unit, Coimbra, PRT.

Monochorionic twin pregnancies carry a risk of perinatal complications due to shared placental anastomoses, which can cause uneven blood distribution and lead to conditions like selective fetal growth restriction (sFGR). This case describes a monochorionic pregnancy complicated by preeclampsia and late-onset sFGR of twin B. Labor was prematurely induced and a 45% weight discordance between the twins was confirmed.

View Article and Find Full Text PDF

The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!