Impaired postural control of axial segments in children with cerebral palsy.

Gait Posture

Université de Lorraine, DevAH (EA3450 Développement, Adaptation & Handicap), F-54000, Nancy, France; Institut Régional de Réadaptation, Centre Louis Pierquin, UGECAM du Nord-Est, Nancy, France. Electronic address:

Published: May 2021

Background: Sensorimotor control of axial segments, which develops during childhood and is not mature until adolescence, is essential for the development of balance control during motor activities. Children with cerebral palsy (CP) have deficits in postural control when standing or walking, including less stabilization of the head and trunk which could affect postural control.

Research Question: Is dynamic stabilization of axial segments during an unstable sitting task deficient in children with CP compared to typically developing children? Is this deficit correlated with the deficit of postural control during standing?

Method: Seventeen children with CP (GMFCS I-II) and 17 typically-developing children from 6 to 12 years old were rated on the Trunk Control Measurement Scale (TCMS). In addition, posturography was evaluated in participants while they maintained their balance in stable sitting, unstable sitting, and quiet standing, under "eyes open" and "eyes closed" conditions. In sitting tasks, the participants had to remain stable while being prevented from using the lower and upper limbs (i.e. to ensure the involvement of axial segments alone).

Results: Children with CP compared to TD children had significantly larger surface area, mean velocity and RMS values of CoP displacements measured during the unstable sitting task and the standing task, under both "eyes open" and "eyes closed" conditions. No significant group effects were observed during the stable sitting task. The TCMS total score was significantly lower, indicating trunk postural deficit, in the CP group than in the TD group and was significantly correlated with postural variables in the sitting and standing tasks.

Significance: Children with CP indeed have a specific impairment in the postural control of axial segments. Since the postural control of axial segments is important for standing and walking, its impairment should be taken into account in rehabilitation programs for children with CP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2021.03.012DOI Listing

Publication Analysis

Top Keywords

axial segments
24
postural control
20
control axial
16
unstable sitting
12
sitting task
12
children
9
control
8
children cerebral
8
cerebral palsy
8
standing walking
8

Similar Publications

Relative anterior microphthalmos (RAM) is a rare ocular condition characterized by disproportionately small anterior segments but normal axial length (corneal diameter < 11 mm and axial length > 20 mm). This study aimed to determine the prevalence of RAM and its association with glaucoma utilizing IOL Master 700 data (Carl Zeiss Meditec, Jena, Germany). A retrospective analysis was conducted of the biometric parameters of 6,407 eyes, and 115 cases of RAM were identified.

View Article and Find Full Text PDF

We developed a simple quantifiable scoring system that predicts aneurysmal subarachnoid hemorrhage (aSAH) mortality, delayed cerebral ischemia (DCI), and modified Rankin scale (mRS) outcomes using readily available SAH admission data with SAH volume (SAHV) measured on computed tomography (CT). We retrospectively analyzed a cohort of 277 patients with aSAH admitted at our Comprehensive Stroke Center at Mayo Clinic in Jacksonville, Florida, between January 5, 2012, and February 24, 2022. We developed a mathematical radiographic model SAHV that measures basal cisternal SAH blood volume using a derivation of the ABC/2 ellipsoid formula (A = width/thickness, B = length, C = vertical extension) on noncontrast CT, which we previously demonstrated is comparable to pixel-based manual segmentation on noncontrast CT.

View Article and Find Full Text PDF

Mechanical function of the annulus fibrosus is preserved following quasi-static compression resulting in endplate fracture.

Clin Biomech (Bristol)

December 2024

Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:

Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.

View Article and Find Full Text PDF

Background And Objective: Dysfunction of the right ventricular outflow tract (RVOT) is a common long-term complication following surgical repair in patients with congenital heart disease. Transcatheter pulmonary valve implantation (TPVI) offers a viable alternative to surgical pulmonary valve replacement (SPVR) for treating pulmonary regurgitation but not all RVOT anatomies are suitable for TPVI. To identify a suitable landing zone (LZ) for TPVI, three-dimensional multiphase (4D) computed tomography (CT) is used to evaluate the size, shape, and dynamic behavior of the RVOT throughout the cardiac cycle.

View Article and Find Full Text PDF

Spasmodic dysphonia: the need for a combined neurological and phoniatric approach.

J Neural Transm (Vienna)

December 2024

IAB - Interdisciplinary Working Group for Movement Disorders, Hamburg, Germany.

Spasmodic dysphonia (SD) is now generally considered to be a task-specific focal dystonia. For the first time, we wanted to explore the relationship between SD and dystonia from a combined neurological and phoniatric perspective. For this, we studied 115 patients with non-psychogenic SD by a combined neurological and phoniatric evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!