Effect of anesthesia on electrocorticography for localization of epileptic focus: Literature review and future directions.

Epilepsy Behav

Comprehensive Epilepsy Center, Dept. of Neurology, School of Medicine, Yale University, Yale New Haven Hospital, New Haven, CT, United States; Human Brain Mapping Program, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.

Published: May 2021

Intraoperative electrocorticography (ECoG) is a useful technique to guide resections in epilepsy surgery and is mostly performed under general anesthesia. In this systematic literature review, we seek to investigate the effect of anesthetic agents on the quality and reliability of ECoG for localization of the epileptic focus. We conducted a systematic search using PubMed and EMBASE until January 2019, aiming to review the effects of anesthesia on ECoG yield. Fifty-eight studies were included from 1016 reviewed. There are favorable reports for dexmedetomidine and remifentanil during ECoG recording. There is inadequate, or sometimes conflicting, evidence to support using enflurane, isoflurane, sevoflurane, and propofol. There is evidence to avoid halothane, nitrous oxide, etomidate, ketamine, thiopental, methohexital, midazolam, fentanyl, and alfentanil due to undesired effects. Depth of anesthesia, intraoperative awareness, and surgical outcomes were not consistently evaluated. Available studies provide helpful information about the effect of anesthesia on ECoG to localize the epileptic focus. The proper use of anesthetic agents and careful dose titration, and effective communication between the neurophysiologist and anesthesiologist based on ECoG activity are essential in optimizing recordings. Anesthesia is a crucial variate to consider in the design of studies investigating ECoG and related biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2021.107902DOI Listing

Publication Analysis

Top Keywords

epileptic focus
12
localization epileptic
8
literature review
8
anesthetic agents
8
anesthesia ecog
8
ecog
7
anesthesia
6
anesthesia electrocorticography
4
electrocorticography localization
4
focus literature
4

Similar Publications

Background: Trigeminal neuralgia (TN) is a prevalent and debilitating craniofacial pain disorder characterized by severe, unilateral, shock-like pain. Standard treatments include anti-epileptic drugs and surgical interventions, but many patients experience limited relief or adverse effects. Non-invasive therapies, such as transcutaneous electrical nerve stimulation (TENS), have emerged as alternative options.

View Article and Find Full Text PDF

Objective: To analyze the disease patterns and acupoint selection characteristics of acupuncture for epilepsy in ancient acupuncture texts, providing references and ideas for clinical acupuncture treatment of epilepsy.

Methods: Texts from the (5th edition) regarding acupuncture for epilepsy are reviewed. The frequency of acupoints, meridian association, distribution, specific points, corresponding epilepsy subtypes, and needling techniques are statistically analyzed.

View Article and Find Full Text PDF

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects.

View Article and Find Full Text PDF

Current treatment approaches for Autism spectrum disorder (ASD) primarily focus on symptom management rather than addressing underlying dysfunctions. The ketogenic diet (KD), a high-fat, low-carbohydrate diet inducing nutritional ketosis, has shown promise in treating epilepsy and may offer therapeutic benefits for ASD by modulating metabolic and neuroprotective pathways. This review examined the potential impact of KD on underlying mechanisms in ASD.

View Article and Find Full Text PDF

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!