Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphitic carbon nitride (g-CN) is a promising photocatalyst for water hydrogen evolution. Nonetheless, fast recombination of photogenerated electron-hole pairs and the slow kinetics of hydrogen production result in the unsatisfactory efficiency of solar hydrogen production. we address this issue by anchoring the cobalt phosphide (CoP) cocatalyst onto the one-dimensional boron doped g-CN nanotube (B-CNNT) to construct B-N-Co surface bonding states in the B-CNNT/CoP photocatalyst. Spectroscopic measurement and density functional theory (DFT) calculations demonstrated that the B-N-Co bonds optimize the local electronic distribution of bonded Co and adjacent P atoms, strengthen the electrons' delocalization capacity of Co atoms for high electrical conductivity and accelerate the photogenerated carrier transfer between B-CNNT and CoP, which lead to the enhanced photocatalytic activity of the B-CNNT/CoP photocatalyst for hydrogen evolution. B-CNNT/CoP-2.45% achieved a remarkable photocatalytic hydrogen production rate of 784 μmol gh with an apparent quantum efficiency of 5.32% at 420 nm, which is significantly higher than demonstrated by CNNT/CoP-2.45% (153 μmol gh). Our findings provide insights into as well as establish theoretical and practical grounds for the development of low-cost, high-performance photocatalytic materials for hydrogen evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.03.134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!