Warmer temperature increases toxicokinetic elimination of PCBs and PBDEs in Northern leopard frog larvae (Lithobates pipiens).

Aquat Toxicol

Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, United States. Electronic address:

Published: May 2021

We studied the temperature dependence of accumulation and elimination of two polychlorinated biphenyls (PCBs; PCB-70 and PCB-126) and a commercial mixture of congeners of polybrominated diphenyl ethers (PBDEs; DE-71™)) in Northern leopard frog (Lithobates pipiens) tadpoles. We reared tadpoles at 18, 23, or 27 °C for 5.3 or up to 13.6 weeks (longer at cooler temperature where development is slower) on diets containing the toxicants, each at several different toxicant concentrations, and compared tissue concentrations as a function of food concentration and rearing temperature. Following > 1 month of accumulation, tissue concentrations of all three toxicants in exposed tadpoles were linearly related to dietary concentrations as expected for first order kinetics, with no significant effect of rearing temperature.We also raised free-swimming L. pipiens tadpoles for 14 days on foods containing either toxicant at 18 or 27 °C during an accumulation phase, and then during depuration (declining toxicant) phase of 14 days we provided food without toxicants and measured the decline of toxicants in tadpole tissue. All the congeners were eliminated faster at warmer rearing temperature, as expected. Using Arrhenius' equation, we calculated that the apparent activation energy for elimination of both PCB congeners by tadpoles was 1.21 eV (95% confidence interval 0.6-1.8 eV). We discuss how this value was within the range of estimates for metabolic reactions generally (range 0.2 - 1.2 eV), which might include metabolic pathways for biotransformation and elimination of PCBs. Furthermore, we discuss how the lack of an effect of rearing temperature on tadpole near-steady-state tissue residue levels suggests that faster elimination at the warmer temperature was balanced by faster uptake, which is plausible considering the similar temperature sensitivities (i.e., activation energies) of all these processes. Although interactions between toxicants and temperature can be complex and likely toxicant-dependent, it is plausible that patterns observed in tadpoles might apply to other aquatic organisms. Published data on depuration in 11 fish species eliminating 8 other organic toxicants indicated that they also had similar apparent activation energy for elimination (0.82 ± 0.12 eV; 95% confidence interval 0.56 - 1.08 eV), even though none of those studied toxicants were PCBs or PBDEs. Additional research on toxicant-temperature interactions can help improve our ability to predict toxicant bioaccumulation in warming climate scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105806DOI Listing

Publication Analysis

Top Keywords

rearing temperature
12
warmer temperature
8
elimination pcbs
8
pcbs pbdes
8
northern leopard
8
leopard frog
8
lithobates pipiens
8
temperature
8
pipiens tadpoles
8
tissue concentrations
8

Similar Publications

A comprehensive study was conducted on the life history parameters of an important vector Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae), to standardize potential rearing procedures. Data on life history traits and rearing conditions are crucial for establishing laboratory colony and conducting vector competence-based studies utilizing specimens with a known rearing history. Six different substrate compositions were used to rear the larvae: S1: habitat mud containing cattle manure + nutrient broth + yeast, S2: yeast, S3: habitat mud containing cattle manure + nutrient broth, S4: nutrient broth, S5: sterile (habitat mud consisting cattle manure + nutrient broth + yeast) and S6: tap water.

View Article and Find Full Text PDF

Temperature and Host Fruit During Immature Development Shape Adult Life History Traits of Different Populations.

Insects

January 2025

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446 Volos, Greece.

Temperature and host fruit availability are key factors influencing the life history traits of the Mediterranean fruit fly (medfly) (). This study examines how developmental temperature and host fruit type affect adult longevity and fecundity in medflies from six populations spanning Southern to Central Europe. Larvae were reared on apples and bitter oranges at three constant temperatures (15, 20, and 25 °C), with pupae maintained under the same thermal conditions until adult emergence.

View Article and Find Full Text PDF

This study explored the thermal response of , an injurious insect pest present in many countries worldwide, at different controlled conditions. This species is responsible for several economic losses in soft fruit cultivations, develops on ripening fruits, and has the capability to quickly adapt to new territories and climates, closing multiple generations per year. Given its high invasive potential and the increasing need for low-impact control strategies, an in-depth exploration of the biology of this species and of the stage thermal response is fundamental.

View Article and Find Full Text PDF

Heat and Cold Shocks Decrease the Incidence of Diapause in Larvae.

Insects

January 2025

Zoological Institute, Russian Academy of Sciences, Universitetskaya 1, 199034 St. Petersburg, Russia.

Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (-10 °C) and heat (43 °C) shocks experienced for at least 20-30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid .

View Article and Find Full Text PDF

Thermal condition affects the development and growth of ectotherms. The stenothermic honeybee brood, particularly the prepupae, are sensitive to low rearing temperature. The fat body plays important roles in energy reserve and metabolism during the honeybee brood development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!