MYB transcription factors play essential roles in many biological processes and environmental stimuli. However, the functions of the MYB transcription factor family in tea plants have not been elucidated. Here, a total of 122 CsR2R3-MYB genes were identified from the chromosome level genome of tea plant (Camellia sinensis). The CsR2R3-MYB genes were phylogenetically classified into 25 groups. Results from the structure analysis of the gene, conserved motifs, and chromosomal distribution supported the relative conservation of the R2R3-MYB genes family in the tea plant. Synteny analysis indicated that 122, 34, and 112 CsR2R3-MYB genes were orthologous to Arabidopsis thaliana, Oryza sativa and C. sinensis var. 'huangdan' (HD), respectively. Tissue-specific expression showed that all CsR2R3-MYB genes had different expression patterns in the tea plant tissues, indicating that these genes may perform diverse functions. The expression patterns of representative R2R3-MYB genes and the regulatory network of the main anthocyanin components were analyzed, which suggested that CsMYB17 may played a key role in the regulation of cya-3-O-gal, del-3-O-gal, cya-3-O-glu and pel-3-O-glu. Results from the qRT-PCR validation of selected genes suggested that CsR2R3-MYB genes were induced in response to drought, cold, GA, and ABA treatments. Overall, this study provides comprehensive and systematic information for research on the function of R2R3-MYB genes in tea plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2021.03.033 | DOI Listing |
Genomics
May 2021
College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China. Electronic address:
MYB transcription factors play essential roles in many biological processes and environmental stimuli. However, the functions of the MYB transcription factor family in tea plants have not been elucidated. Here, a total of 122 CsR2R3-MYB genes were identified from the chromosome level genome of tea plant (Camellia sinensis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!