A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkg1bptgisgsde99m4mn8iuo7b10i8ad7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epithelia-Sensory Neuron Cross Talk Underlies Cholestatic Itch Induced by Lysophosphatidylcholine. | LitMetric

Epithelia-Sensory Neuron Cross Talk Underlies Cholestatic Itch Induced by Lysophosphatidylcholine.

Gastroenterology

Department of Neurology, Duke University, Durham, North Carolina; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University, Durham, North Carolina; Clinics for Innovative Pain Therapy, Department of Anesthesiology, Duke University, Raleigh, North Carolina. Electronic address:

Published: July 2021

AI Article Synopsis

  • Limited understanding of pruritus (itch) mechanisms in cholestatic liver diseases hampers the development of effective treatments, with lysophosphatidic acid (LPA) previously suggested as a potential mediator.
  • *The study examined the pruritogenic effects of its precursor, lysophosphatidylcholine (LPC), through various experiments involving different animal models and human patient samples, highlighting the role of TRPV4 channels in skin keratinocytes.
  • *Results showed that LPC triggers itch by activating TRPV4 in keratinocytes, leading to the release of miR-146a, which in turn activates TRPV1 sensory neurons; elevated levels of LPC and miR-146a were found in the serum of patients

Article Abstract

Background & Aims: Limited understanding of pruritus mechanisms in cholestatic liver diseases hinders development of antipruritic treatments. Previous studies implicated lysophosphatidic acid (LPA) as a potential mediator of cholestatic pruritus.

Methods: Pruritogenicity of lysophosphatidylcholine (LPC), LPA's precursor, was examined in naïve mice, cholestatic mice, and nonhuman primates. LPC's pruritogenicity involving keratinocyte TRPV4 was studied using genetic and pharmacologic approaches, cultured keratinocytes, ion channel physiology, and structural computational modeling. Activation of pruriceptor sensory neurons by microRNA-146a (miR-146a), secreted from keratinocytes, was identified by in vitro and ex vivo Ca imaging assays. Sera from patients with primary biliary cholangitis were used for measuring the levels of LPC and miR-146a.

Results: LPC was robustly pruritic in mice. TRPV4 in skin keratinocytes was essential for LPC-induced itch and itch in mice with cholestasis. Three-dimensional structural modeling, site-directed mutagenesis, and channel function analysis suggested a TRPV4 C-terminal motif for LPC binding and channel activation. In keratinocytes, TRPV4 activation by LPC induced extracellular release of miR-146a, which activated TRPV1 sensory neurons to cause itch. LPC and miR-146a levels were both elevated in sera of patients with primary biliary cholangitis with itch and correlated with itch intensity. Moreover, LPC and miR-146a were also increased in sera of cholestatic mice and elicited itch in nonhuman primates.

Conclusions: We identified LPC as a novel cholestatic pruritogen that induces itch through epithelia-sensory neuron cross talk, whereby it directly activates skin keratinocyte TRPV4, which rapidly releases miR-146a to activate skin-innervating TRPV1 pruriceptor sensory neurons. Our findings support the new concept of the skin, as a sensory organ, playing a critical role in cholestatic itch, beyond liver, peripheral sensory neurons, and central neural pathways supporting pruriception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093619PMC
http://dx.doi.org/10.1053/j.gastro.2021.03.049DOI Listing

Publication Analysis

Top Keywords

sensory neurons
16
itch
9
epithelia-sensory neuron
8
neuron cross
8
cross talk
8
cholestatic itch
8
lpc
8
cholestatic mice
8
keratinocyte trpv4
8
pruriceptor sensory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!