Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protected and spin-polarized transport channels are the hallmark of topological insulators, coming along with an intrinsic strong spin-orbit coupling. Here we identified such corresponding chiral states in epitaxially grown zigzag graphene nanoribbons (zz-GNRs), albeit with an extremely weak spin-orbit interaction. While the bulk of the monolayer zz-GNR is fully suspended across a SiC facet, the lower edge merges into the SiC(0001) substrate and reveals a surface state at the Fermi energy, which is extended along the edge and splits in energy toward the bulk. All of the spectroscopic details are precisely described within a tight binding model incorporating a Haldane term and strain effects. The concomitant breaking of time-reversal symmetry without the application of external magnetic fields is supported by ballistic transport revealing a conduction of = /.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c05013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!