Temperature-Enhanced Colistin Resistance Gene Detection with Electrochemical Impedance Spectroscopy Biosensors.

Anal Chem

Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K.

Published: April 2021

AI Article Synopsis

  • * There is an urgent need for rapid molecular diagnostic tests to detect colistin resistance genes, and electrochemical impedance spectroscopy (EIS) has emerged as a cost-effective and efficient method for this purpose.
  • * A new EIS-based gene detection test was developed, featuring temperature-controlled processes that significantly improve discrimination between perfect matches and mismatches in DNA, enhancing the accuracy of detecting resistance genes without the need for labels or amplification.

Article Abstract

Antibiotic resistance is now one of the biggest threats humankind is facing, as highlighted in a declaration by the General Assembly of the United Nations in 2016. In particular, the growing resistance rates of Gram-negative bacteria cause increasing concerns. The occurrence of the easily transferable, plasmid-encoded colistin resistance gene further worsened the situation, significantly enhancing the risk of the occurrence of pan-resistant bacteria. There is therefore a strong demand for new rapid molecular diagnostic tests for the detection of gene-associated colistin resistance. Electrochemical impedance spectroscopy (EIS) is a well-suited method for rapid antimicrobial resistance detection as it enables rapid, label-free target detection in a cost-efficient manner. Here, we describe the development of an EIS-based gene detection test, including the design of -specific peptide nucleic acid probes and assay specificity optimization through temperature-controlled real-time kinetic EIS measurements. A new flow cell measurement setup enabled for the first time detailed real-time, kinetic temperature-controlled hybridization and dehybridization studies of EIS-based nucleic acid biosensors. The temperature-controlled EIS setup allowed single-nucleotide polymorphism discrimination. Target hybridization at 60 °C enhanced the perfect match/mismatch (PM/MM) discrimination ratio from 2.1 at room temperature to 3.4. A hybridization and washing temperature of 55 °C further increased the PM/MM discrimination ratio to 5.7 by diminishing the mismatch signal during the washing step while keeping the perfect match signal. This newly developed gene detection test enabled the direct, specific label, and amplification-free detection of gene harboring plasmids from .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c00666DOI Listing

Publication Analysis

Top Keywords

colistin resistance
12
gene detection
12
resistance gene
8
electrochemical impedance
8
impedance spectroscopy
8
detection test
8
nucleic acid
8
real-time kinetic
8
pm/mm discrimination
8
discrimination ratio
8

Similar Publications

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Antimicrobial resistant Enterobacterales of clinical importance in mute swans.

Sci Total Environ

January 2025

Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.

Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.

View Article and Find Full Text PDF

Comparative effects of dexpanthenol and thymoquinone on colistin-induced neurotoxicity in rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Infectious Diseases and Clinical Microbiology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Türkiye.

Colistin is used as a last-line treatment for multidrug-resistant gram-negative bacilli. Neurotoxicity limits clinic use of colistin. The use of colistin causes oxidative stress and inflammation.

View Article and Find Full Text PDF

The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.

View Article and Find Full Text PDF

Synergistic antimicrobial efficacy of glabrol and colistin through micelle-based co-delivery against multidrug-resistant bacterial pathogens.

Phytomedicine

January 2025

Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

Background: Widespread bacterial infection and the spread of multidrug resistance (MDR) exhibit increasing threats to the public and thus require new antibacterial strategies. Coupled with the current slow pace of antibiotic development, the use of antibiotic adjuvants to revitalize existing antibiotics offers great potential.

Purpose: We aim to explore the synergistic antimicrobial mechanism of glabrol (GLA) and colistin (COL) while developing an innovative multifunctional micelle-based drug delivery system to enhance therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!