This paper deals with the effect of introducing an additional interaction site onto molecular-mechanical models of nitrogen-containing heterocyclic compounds. The introduction of only one additional site next to nitrogen atoms is shown to result in significant improvement of the quality of the models along with negligible slowdown of calculation speed. Concretely, it was proposed to introduce the site inside the aromatic ring at a distance of 0.4 Å from the nitrogen atom center. All the parametrization can be completely automated. The proposed force field allows predicting heats of evaporation of liquids of the compound under investigation with an accuracy of 1 kcal/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-021-04731-2DOI Listing

Publication Analysis

Top Keywords

molecular-mechanical models
8
heterocyclic compounds
8
partial charges
4
charges molecular-mechanical
4
models heterocyclic
4
compounds pyridine
4
pyridine nitrogen
4
nitrogen paper
4
paper deals
4
deals introducing
4

Similar Publications

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.

View Article and Find Full Text PDF

The target DNA (tDNA) cleavage catalyzed by the CRISPR Cas9 enzyme is a critical step in the Cas9-based genome editing technologies. Previously, the tDNA cleavage from an active SpyCas9 enzyme conformation was modeled by Palermo and co-workers (Nierzwicki et al., , 912) using ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulations, where the free energy barrier was found to be more favorable than that from a pseudoactive enzyme conformation.

View Article and Find Full Text PDF

Non-heme iron (Fe), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of Fe/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others.

View Article and Find Full Text PDF

Pipelined information flow in molecular mechanical circuits leads to increased error and irreversibility.

Phys Rev E

October 2024

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

Pipelining is a design technique for logical circuits that allows for higher throughput than circuits in which multiple computations are fed through the system one after the other. It allows for much faster computation than architectures in which inputs must pass through every layer of the circuit before the next computation can begin (phased chaining). We explore the hypothesis that these advantages may be offset by a higher error rate, logical irreversibility, and greater thermodynamic costs by simulating pipelined molecular mechanical circuits using an explicit physical model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!