Sugarcane microRNAs specifically involved during compatible and incompatible interactions with red rot pathogen Colletotrichum falcatum were identified. We have identified how the miRNAs regulate their gene targets and elaborated evidently on the underlying molecular mechanism of sugarcane defense response to C. falcatum for the first time. Resistance against the fungal pathogen Colletotrichum falcatum causing red rot is one of the most desirable traits for sustainable crop cultivation in sugarcane. To gain new insight into the host defense mechanism against C. falcatum, we studied the role of sugarcane microRNAs during compatible and incompatible interactions by adopting the NGS platform. We have sequenced a total of 80 miRNA families that comprised 980 miRNAs, and the putative targets of the miRNAs include transcription factors, membrane-bound proteins, glutamate receptor proteins, lignin biosynthesis proteins, signaling cascade proteins, transporter proteins, mitochondrial proteins, ER proteins, defense-related, stress response proteins, translational regulation proteins, cell proliferation, and ubiquitination proteins. Further, qRT-PCR analyses of 8 differentially regulated miRNAs and 26 gene transcript targets expression indicated that these miRNAs have a regulatory effect on the expression of respective target genes in most of the cases. Also, the results suggest that certain miRNA regulates many target genes that are involved in inciting early responses to the pathogen infection, signaling pathways, endoplasmic reticulum stress, and resistance gene activation through feedback response from various cellular processes during the compatible and incompatible interaction with the red rot pathogen C. falcatum. The present study revealed the role of sugarcane miRNAs and their target genes during sugarcane-C. falcatum interaction and provided new insight into the miRNA-mediated defense mechanism in sugarcane for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-021-02682-9 | DOI Listing |
Front Fungal Biol
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.
View Article and Find Full Text PDFPlant Dis
January 2025
Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;
Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Animal Science and Technology, Southwest University, Chongqing, China.
Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.
View Article and Find Full Text PDFPhytopathology
January 2025
Centro de Investigaciones Biologicas, Departament of Cellular and Molecular Biology, Ramiro de Maeztu, 9, Madrid, Madrid, Madrid, Spain, 28040.
Brown rot is a disease that affects stone and pome fruit crops worldwide. It is caused by fungal members of the genus , mainly , and . This study presents evidence that, despite having a very similar battery of Cell Wall Degrading Enzymes (CWDEs), the three species behave differently during the early stages of infection, suggesting differences at the regulatory level, which could also explain the differences in host preference among the three species.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
To obtain an effective bacterial biocontrol strain against the fungal pathogen , causing rubber tree red root rot disease, healthy rubber tree tissue from Baisha County, Hainan Province, was selected as the isolation source, and bacterial strains with strong antifungal effects against . were screened. The strain was identified by molecular biology, in vitro root segment tests, pot growth promotion tests, and genome detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!