Heart sound recognition technology based on convolutional neural network.

Inform Health Soc Care

Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Japan.

Published: September 2021

The mortality rate of heart disease continues to rise each year: developing mechanisms to reduce mortality from heart disease is a top concern in today's society. Heart sound auscultation is a crucial skill used to detect and diagnose heart disease. In this study, we propose a heart sound signal classification algorithm based on a convolutional neural network. The algorithm is based on heart sound data collected in the clinic and from medical books. The heart sound signals were first preprocessed into a grayscale image of 5 seconds. The training samples were then used to train and optimize the convolutional neural network; obtaining a training result with an accuracy of 95.17% and a loss value of 0.23. Finally, the convolutional neural network was used to test the test set samples. The results showed an accuracy of 94.80%, sensitivity of 94.29%, specificity of 95.54%, precision of 93.44%, F1_score of 93.84%, and an AUC of 0.943. Compared with other algorithms, the accuracy and sensitivity of the algorithms were improved. This shows that the method used in this study can effectively classify heart sound signals and could prove useful in assisting heart sound auscultation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17538157.2021.1893736DOI Listing

Publication Analysis

Top Keywords

heart sound
28
convolutional neural
16
neural network
16
heart disease
12
heart
10
based convolutional
8
sound auscultation
8
algorithm based
8
sound signals
8
sound
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!