Enzyme inhibitors play a crucial role in diagnosis of a wide spectrum of diseases related to bacterial infections. We report here the effect of a water-soluble self-assembled Pd molecular cage towards β-galactosidase enzyme activity. The molecular cage is composed of a tetrapyridyl donor (L) and cis-[(en)Pd(NO ) ] (en=ethane-1,2-diamine) acceptor and it has a hydrophobic internal cavity. We have observed that the acceptor moiety mainly possesses the ability to inactivate the β-galactosidase enzyme activity. Kinetic investigation revealed the mixed mode of inhibition. This inhibition strategy was extended to control the growth of methicillin-resistant Staphylococcus aureus. The internalization of the Pd(II) cage inside the bacteria was confirmed when bacterial solutions were incubated with curcumin loaded cage. The intrinsic green fluorescence of curcumin made the bacteria glow when put under an optical microscope. Furthermore, this curcumin loaded molecular cage shows an enhanced antibacterial activity. Thus, Pd molecular cage is quite attractive due to its dual role as enzyme inhibitor and drug carrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202100008 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFBiomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Amsterdam Van 't Hoff Institute for Molecular Sciences: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences, HIMS, NETHERLANDS, KINGDOM OF THE.
The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!