Political and economic initiatives intended to increase energy production while reducing carbon emissions are driving demand for solar energy. Consequently, desert regions are now targeted for development of large-scale photovoltaic solar energy facilities. Where vegetation communities are left intact or restored within facilities, ground-mounted infrastructure may have negative impacts on desert-adapted plants because it creates novel rainfall runoff and shade conditions. We used experimental solar arrays in the Mojave Desert to test how these altered conditions affect population dynamics for a closely related pair of native annual plants: rare Eriophyllum mohavense and common E. wallacei. We estimated aboveground demographic rates (seedling emergence, survivorship, and fecundity) over 7 yr and used seed bank survival rates from a concurrent study to build matrix models of population growth in three experimental microhabitats. In drier years, shade tended to reduce survival of the common species, but increase survival of the rare species. In a wet year, runoff from panels tended to increase seed output for both species. Population growth projections from microhabitat-specific matrix models showed stronger effects of microhabitat under wetter conditions, and relatively little effect under dry conditions (lack of rainfall was an overwhelming constraint). Performance patterns across microhabitats in the wettest year differed between rare and common species. Projected growth of E. mohavense was substantially reduced in shade, mediated by negative effects on aboveground demographic rates. Hence, the rare species were more susceptible to negative effects of panel infrastructure in wet years that are critical to seed bank replenishment. Our results suggest that altered shade and water runoff regimes associated with energy infrastructure will have differential effects on demographic transitions across annual species and drive population-level processes that determine local abundance, resilience, and persistence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459290 | PMC |
http://dx.doi.org/10.1002/eap.2349 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia. Electronic address:
This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65167 ,Iran.
Interfacial solar evaporator generation (ISVG) is a new, cost-effective, and eco-friendly emerging method for water desalination. Two main criteria for evaluating ISVG performance are evaporation rate () and solar-to-vapor conversion efficiency (η). The main challenge of the previously presented models for the estimation of and η in 2D systems is that in most cases the calculated values are beyond the theoretical limits, > 1.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!