Traumatic brain injury (TBI) represents a public healthcare problem and a major economic burden, all over the world. It is estimated that every year, on the globe, there occur about two million severe TBI and over 42 million mild TBI. The main causes of TBI in civil population are fallings, followed by car accidents. In the last decades, the accelerated development of car industry and the poor development of traffic infrastructure in low- and average-income countries led to an increasing number of brain injuries, this becoming a major problem for medical health systems. According to some studies, approximately 1.35 million people die every year because of car accidents. In the last four decades, these types of injuries started to be studied in order to understand the lesion mechanisms for developing new safety equipment that may be installed on vehicles. The device presented by us for causing a TBI in a lab rat (mechanical pendulum) allows the performance of several major types of TBI, according to the kinetic energy, exposure area, contact surface, etc. The impact energies obtained by the device we presented may vary on a large scale, from less than 1 J up to 10 J, according to its weight, launching angle and impact head shape, thus being obtained minor, moderate or severe TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112795 | PMC |
http://dx.doi.org/10.47162/RJME.61.3.11 | DOI Listing |
Anal Cell Pathol (Amst)
December 2024
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.
Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Center for Neuropsychology and Consciousness, Miami, FL, United States.
While PTSD continues to be researched in great depth, less attention has been given to the continuum of traumatic responses that resides outside this diagnosis. This investigation begins with a literature review examining the spectrum of responses through the lens of the default mode network (DMN). To build upon this literature, a systematic exploratory study was incorporated, examining DMN-related neuropsychological functioning of 27 participants (16 trauma-exposed, and 11 non-trauma-exposed), with a subset (15 participants) completing neuroimaging.
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
High-impact headbutting behavior makes the muskox (Ovibos moschatus) a charismatic species. While many theorize how these headbutting bovids might protect their brain during such encounters, few have investigated their claims anatomically. We investigated the anatomical function of digitiform impressions in the bovid brain cavity and their relationship to headbutting.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France.
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!