Attachment behavior is a key component of flotation and has a decisive influence on flotation performance, and the experiment research on the attachment between mineral particles and bubbles still needs further research. In this work, a particle-bubble attachment apparatus and multiple target tracking software were developed. Coal particles were used as the subjects, and the effect of particle properties on the attachment performance was studied from the perspective of the particle group. The particle-bubble attachment experiments indicated that the collision position had an effect on the attachment efficiency, and the attachment efficiency decreased with an increase in the collision angle. The efficiency-weighted attachment angle was proposed to quantitatively describe the attachment performance of coal samples. The efficiency-weighted attachment angle of low-density coal samples was greater than that of high-density coal samples. For particles with different sizes, the efficiency-weighted attachment angle of fine particles was greater than that of coarse particles. Furthermore, SDS weakened the attachment performance between coal particles and bubbles via adsorption on the bubble, and the efficiency-weighted attachment angle decreased as the concentration of the SDS solution increased. CTAB adsorbed on coal particles and bubbles, and the efficiency-weighted attachment angle first increased and then decreased with increasing CTAB concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014942PMC
http://dx.doi.org/10.1021/acsomega.0c04093DOI Listing

Publication Analysis

Top Keywords

efficiency-weighted attachment
20
attachment angle
20
attachment performance
16
attachment
15
performance coal
12
particles bubbles
12
coal particles
12
coal samples
12
particle-bubble attachment
8
attachment efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!