Background: Regional anesthesia has anti-proliferative and pro-apoptotic effects in various cancers. Therefore, the purpose of this study was to investigate the effects of ropivacaine on the proliferation, migration, invasion, and apoptosis of glioma cells .
Methods: Under ropivacaine stimulation conditions, proliferation, apoptosis, migration, and invasion of glioma cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-tetrazol-3-ium bromide (MTT), flow cytometry, and transwell assays, respectively. Western blot assay was employed to measure the protein expression levels in glioma cells. The expression levels of small nucleolar RNA host gene 16 (SNHG16) and miR-424-5p were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The interaction relationship between SNHG16 and miR-424-5p was predicted and confirmed using a bioinformatics database and dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays.
Results: After treatment with ropivacaine, proliferation, migration, and invasion were repressed while apoptosis was enhanced in glioma cells in a dose-depended manner. In addition, ropivacaine impeded SNHG16 expression in glioma cells. Importantly, overexpression of SNHG16 abolished the ropivacaine-induced effects on glioma cells. Analogously, knockdown of miR-424-5p counteracted the function of ropivacaine in glioma cells. We also found that SNHG16 bound to miR-424-5p and negatively regulated miR-424-5p expression in glioma cells. The rescue experiments indicated that ropivacaine might regulate glioma progression by targeting the SNHG16/miR-424-5p axis.
Conclusion: Our findings revealed the anti-tumor effects of ropivacaine in glioma by targeting the SNHG16/miR-424-5p axis. These data might extend the understanding of regulatory mechanisms by which ropivacaine could suppress glioma development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874551 | PMC |
http://dx.doi.org/10.1515/biol-2020-0108 | DOI Listing |
It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.
View Article and Find Full Text PDFEndocr Regul
January 2025
1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
Background: Glioma, the most common primary cancer of the central nervous system, characterizes significant heterogeneity, presenting major challenges for therapeutic approaches and prognosis. In this study, the interactions between malignant glioma cells and macrophages/monocytes, as well as their influence on tumor progression and treatment responses, were explored using comprehensive single-cell RNA sequencing analysis.
Methods: RNA-seq data from the TCGA and CGGA databases were integrated and an in-depth analysis of glioma samples was performed using single-cell RNA sequencing, functional enrichment analysis, developmental trajectory analysis, cell-cell communication analysis, and gene regulatory network analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!