Autologous skin grafts are used to treat severe burn wounds, however, the availability of adequate donor sites makes this option less practical. Recently, stem cells have been used successfully in tissue engineering and in regenerative medicine. The current study aims to differentiate umbilical cord tissue derived mesenchymal stem cells (CT-MSCs) into skin cells (fibroblasts and keratinocytes) for use to treat severe burn wounds. After isolation, MSCs were characterized and their growth characteristics were determined. The cells were induced to differentiate into fibroblasts and keratinocytes using respective induction medium. Results indicated that CT-MSCs were spindle shaped, plastic adherent and positive for CD29, CD44, CD73, CD90 markers. CT-MSCs also showed high proliferative potential as indicated by cumulative population doubling, doubling time and plating efficiency. The MSCs were successfully differentiated into fibroblast and keratinocytes as indicated by morphological changes and expression of lineage specific genes. We propose that these differentiated skin cells which are derived from CT-MSCs can thus be used for the development of bioengineered skin; however, further studies are required to evaluate the utility of these substitutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874732 | PMC |
http://dx.doi.org/10.1515/biol-2018-0065 | DOI Listing |
Curr Org Synth
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.
Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).
Front Parasitol
April 2024
National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China.
Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!