Anti-forgery information, transaction verification, and smart contract are functionalities of blockchain technology that can change the traditional business processes of IT applications. These functionalities increase the data transparency, and trust of users in the new application models, thus resolving many different social problems today. In this work, we take all the advantages of this technology to build a blockchain-based authentication system (called the Vietnamese Educational Certification blockchain, which stands for VECefblock) to deal with the delimitation of fake certificate issues in Vietnam. In this direction, firstly, we categorize and analyze blockchain research and application trends to make out our contributions in this domain. Our motivating factor is to curb fake certificates in Vietnam by applying the suitability of blockchain technology to the problem domain. This study proposed some blockchain-based application development principles in order to build a step by step VECefblock with the following procedures: designing overall architecture along with business processes, data mapping structure and implementing the decentralized application that can meet the specific Vietnamese requirements. To test system functionalities, we used Hyperledger Fabric as a blockchain platform that is deployed on the Amazon EC2 cloud. Through performance evaluations, we proved the operability of VECefblock in the practical deployment environment. This experiment also shows the feasibility of our proposal, thus promoting the application of blockchain technology to deal with social problems in general as well as certificate management in Vietnam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924472 | PMC |
http://dx.doi.org/10.7717/peerj-cs.266 | DOI Listing |
Sensors (Basel)
January 2025
State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea.
Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China.
This paper introduces RWA-BFT, a reputation-weighted asynchronous Byzantine Fault Tolerance (BFT) consensus algorithm designed to address the scalability and performance challenges of blockchain systems in large-scale IoT scenarios. Traditional centralized IoT architectures often face issues such as single points of failure and insufficient reliability, while blockchain, with its decentralized and tamper-resistant properties, offers a promising solution. However, existing blockchain consensus mechanisms struggle to meet the high throughput, low latency, and scalability demands of IoT applications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China.
This article presents a systematic review on blockchain-facilitated cybersecurity solutions for Internet of Things (IoT) devices in space-air-ground integrated networks (SAGIN). First, we identify the objectives and the context of the blockchain-based solutions for SAGIN. Although, typically, the blockchain is primarily used to enhance the trustworthiness of some systems or operations, it is necessary to document exactly in what context the blockchain is used that is specific to the IoT and SAGIN.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Technology, University of Tabuk, Tabuk 47731, Saudi Arabia.
Web 3.0 marks the beginning of a new era for the internet, characterized by distributed technology that prioritizes data ownership and value expression. Web 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!