From Cell Death to Regeneration: Rebuilding After Injury.

Front Cell Dev Biol

School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.

Published: March 2021

The ability to regrow lost or damaged tissues is widespread, but highly variable among animals. Understanding this variation remains a challenge in regeneration biology. Numerous studies from to mouse have shown that apoptosis acts as a potent and necessary mechanism in regeneration. Much is known about the involvement of apoptosis during normal development in regulating the number and type of cells in the body. In the context of regeneration, apoptosis also regulates cell number and proliferation in tissue remodeling. Apoptosis acts both early in the process to stimulate regeneration and later to regulate regenerative patterning. Multiple studies indicate that apoptosis acts as a signal to stimulate proliferation within the regenerative tissues, producing the cells needed for full regeneration. The conservation of apoptosis as a regenerative mechanism demonstrated across species highlights its importance and motivates the continued investigation of this important facet of programmed cell death. This review summarizes what is known about the roles of apoptosis during regeneration, and compares regenerative apoptosis with the mechanisms and function of apoptosis in development. Defining the complexity of regenerative apoptosis will contribute to new knowledge and perspectives for understanding mechanisms of apoptosis induction and regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012889PMC
http://dx.doi.org/10.3389/fcell.2021.655048DOI Listing

Publication Analysis

Top Keywords

apoptosis acts
12
apoptosis
11
cell death
8
regenerative apoptosis
8
regeneration
7
regenerative
5
death regeneration
4
regeneration rebuilding
4
rebuilding injury
4
injury ability
4

Similar Publications

Irisquinone's Anti-cancer Potential: Targeting TrxR to Trigger ROS-mediated Apoptosis and Pyroptosis.

Anticancer Agents Med Chem

January 2025

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China.

Background: Irisquinone, an important compound extracted from Semen Irisis, has been used clinically as a radiotherapy sensitizer for lung, oesophageal, head and neck, breast and leukemia cancers. However, the mechanism by which it acts against cancer is still unclear.

Objective: The present study aims to investigate the anti-tumor activity and mechanism of Irisquinone.

View Article and Find Full Text PDF

The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).

View Article and Find Full Text PDF

Introduction: In recent years, there has been a rise in the incidence of renal cell carcinoma (RCC), with metastatic RCC being a prevalent and significant contributor to mortality. While a regulatory role for microRNAs (miRNAs) in the development and progression of RCC has been recognized, their precise functions, molecular mechanisms, and potential clinical implications remain inadequately elucidated. Hence, this study aimed to explore the role of miR-507 in RCC and identify STEAP3 as a downstream target of miR-507.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).

View Article and Find Full Text PDF

Introduction: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and the second leading cause of cancer death worldwide [19]. Opioid growth factor (OGF) has been shown to exhibit antitumour potential, binding to OGF receptor (OGFr). Naltrexone (NTX), an OGFr antagonist, is considered as a potential anti-cancer agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!