AI Article Synopsis

  • The study presents an electrochemical sensor designed for the selective recognition and measurement of amoxicillin, a β-lactam antibiotic, using a modified carbon paste electrode.
  • The sensor incorporates a magnetic molecularly imprinted polymer (mag-MIP), created through a specific chemical process, which enhances its ability to target amoxicillin effectively.
  • Testing shows that this new sensor offers improved performance compared to non-imprinted counterparts, with a detection limit of 0.75 μmol L and minimal interference from other substances in real-world samples like skimmed milk and river water.

Article Abstract

This work describes an electrochemical sensor for the selective recognition and quantification of amoxicillin and a β-lactam antibiotic in real samples. This sensor consists of a carbon paste electrode (CPE) modified with mag-MIP (magnetic molecularly imprinted polymer), which was prepared by precipitation method via free radical using acrylamide (AAm) as functional monomer, N,N'-methyleneacrylamide (MBAA) as a crosslinker, and potassium persulfate (KPS) as initiator, to functionalized magnetic nanoparticles. The magnetic non-imprinted polymers (mag-NIP) were prepared using the same experimental procedure without analyte and used for the preparation of a CPE for comparative studies. The morphological, structural, and electrochemical characteristics of the nanostructured material were evaluated using Field emission gun scanning electron microscopy (FEG-SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Vibrating sample magnetometry (VSM), X-ray diffraction (XRD), and voltammetric technique. Electrochemical experiments performed by square wave voltammetry show that the mag-MIP/CPE sensor had a better signal response compared to the non-imprinted polymer-modified electrode (mag-NIP/CPE). The sensor showed a linear range from 2.5 to 57 μmol L of amoxicillin ( = 0.9964), with a limit of detection and a limit of quantification of 0.75 and 2.48 μmol L, respectively. No significant interference in the electrochemical signal of amoxicillin was observed during the testing experiments in real samples (skimmed milk and river water). The proposed mag-MIP/CPE sensor could be used as a good alternative method to confront other techniques to determine amoxicillin in different samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017129PMC
http://dx.doi.org/10.3389/fchem.2021.615602DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
amoxicillin samples
8
real samples
8
electron microscopy
8
mag-mip/cpe sensor
8
sensor
6
amoxicillin
5
development electrochemical
4
sensor based
4
based mag-mip
4

Similar Publications

Selective Undercut of Undoped Optical Membranes for Spin-Active Color Centers in 4H- Silicon Carbide.

ACS Nano

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.

View Article and Find Full Text PDF

In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately.

View Article and Find Full Text PDF

The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces.

View Article and Find Full Text PDF

A novel efficient electrochemical sensor for detecting paracetamol contaminants in polluted water using an active electrode from tungsten oxide nanoplates.

Phys Chem Chem Phys

January 2025

Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.

Herein, electrochemical sensing of paracetamol in polluted water was achieved using facile-synthesized tungsten oxide nanoparticles. Ion exchange resin has been used as a sustainable preparation route, while the prepared nanoparticles have been characterized by XRD and SEM analyses. Orthorhombic WO·HO nano-plates have been synthesized a facile preparation method, where the crystal size has been calculated as 25-33 nm, and these results were used to create a 3D model of the prepared WO·HO nano-plates.

View Article and Find Full Text PDF

Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!