Ovarian cancer is the most lethal female genital malignancy. Although cisplatin is the first-line chemotherapy to treat ovarian cancer patients along with debulking surgeries, its efficacy is limited due to the high incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been shown to be a key metabolic enzyme and is associated with poor prognosis in various cancers, including ovarian cancer. Nevertheless, no studies have probed the mechanistic relationship between ACLY and cisplatin resistance. Survival analysis was mainly carried out online. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT and colony formation assays. Cell cycle and apoptosis analysis were performed by flow cytometry. The acquired-cisplatin-resistant cell line A2780/CDDP was generated by exposing A2780 to cisplatin at gradually elevated concentrations. MTT assay was used to calculate IC values of cisplatin. A xenograft tumor assay was used test cell proliferation . Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3, and HEY cells inhibited cell proliferation, caused cell-cycle arrest by modulating the P16-CDK4-CCND1 pathway, and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of the GSE15709 dataset revealed upregulation of ACLY and activation of PI3K-AKT pathway in cells with acquired cisplatin resistance, in line with observations on A2780/CDDP cells that we generated. Knockdown of ACLY alleviated cisplatin resistance, and works synergistically with cisplatin treatment to induce apoptosis in A2780/CDDP cells by inhibiting the PI3K-AKT pathway and activating AMPK-ROS pathway. The ACLY-specific inhibitor SB-204990 showed the same effect. In A2780/CDDP cells, AKT overexpression could attenuate cisplatin re-sensitization caused by ACLY knockdown. Knockdown of ACLY attenuated cisplatin resistance by inhibiting the PI3K-AKT pathway and activating the AMPK-ROS pathway. These findings suggest that a combination of ACLY inhibition and cisplatin might be an effective strategy for overcoming cisplatin resistance in ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011496PMC
http://dx.doi.org/10.3389/fonc.2021.642229DOI Listing

Publication Analysis

Top Keywords

cisplatin resistance
28
ovarian cancer
24
pi3k-akt pathway
16
cisplatin
13
inhibiting pi3k-akt
12
pathway activating
12
activating ampk-ros
12
ampk-ros pathway
12
knockdown acly
12
a2780/cddp cells
12

Similar Publications

PAR2 promotes malignancy in lung adenocarcinoma.

Am J Transl Res

December 2024

Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University Tianjin 300070, China.

Proteinase-activated receptor-2 (PAR2) is closely linked to tumor malignancy, but its biological role in cancer remains underexplored. In this study, we assessed PAR2 expression in lung adenocarcinoma (LUAD) and normal lung tissues, analyzed associations between clinicopathological features and survival rates, and confirmed that PAR2 promotes apoptosis resistance and reduces cisplatin-induced cytotoxicity in lung cancer cells. Using TCGA datasets, western blotting, qPCR, and immunohistochemistry (IHC), we observed a significant increase in PAR2 levels in LUAD samples compared to normal tissues (P<0.

View Article and Find Full Text PDF

The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy.

Future Med Chem

January 2025

Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China.

Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Background: Chemoresistance is a major cause of treatment failure in advanced colorectal cancer (CRC), severely impacting patient survival and quality of life. While conventional chemotherapy regimens can somewhat control tumor progression, their effectiveness is frequently compromised by the development of drug resistance in cancer cells. The aim of this study is to verify and elucidate the specific mechanisms by which leptin enhances chemosensitivity in CRC, providing valuable insights for the development of new combination chemotherapy options.

View Article and Find Full Text PDF

USP1 promotes pancreatic cancer progression and autophagy by deubiquitinating ATG14.

J Biol Chem

January 2025

Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality and limited therapeutic strategy. Autophagy is hyperactivated in PDAC and targeting autophagy are emerging as promising therapeutic strategies. The dysfunction of deubiquitinase USP1 results in tumorigenesis and chemotherapy resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!