A curve-free, Bayesian decision-theoretic two-stage design is proposed to select biological efficacious doses (BEDs) for phase Ia/Ib trials in which both toxicity and efficacy signals are observed. No parametric models are assumed to govern the dose-toxicity, dose-efficacy, and toxicity-efficacy relationships. We assume that the dose-toxicity curve is monotonic non-decreasing and the dose-efficacy curve is unimodal. In the phase Ia stage, a Bayesian model on the toxicity rates is used to locate the maximum tolerated dose. In the phase Ib stage, we model the dose-efficacy curve using a step function while continuing to monitor the toxicity rates. Furthermore, a measure of the goodness of fit of a candidate step function is proposed, and the interval of BEDs associated with the best fitting step function is recommended. At the end of phase Ib, if some doses are recommended as BEDs, a cohort of confirmation is recruited and assigned at these doses to improve the precision of estimates at these doses. Extensive simulation studies show that the proposed design has desirable operating characteristics across different shapes of the underlying true toxicity and efficacy curves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014959 | PMC |
http://dx.doi.org/10.1007/s12561-020-09272-5 | DOI Listing |
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.
This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.
View Article and Find Full Text PDFXenotransplantation
January 2025
Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!