Background: The iron/siderophore uptake system (IUS) involved in the pathogenicity. However, IUS's role in antibiotic resistance and the production of -lactamase enzymes of are unclear. This study aimed to investigate the relationship between the production of -lactamase enzymes and IUS regulatory genes in clinical isolates of . isolates were collected from clinical isolates using biochemical tests. The antibiotic resistance patterns and -lactamase-producing strains were identified using the disk diffusion method (DDM). Also, IUS genes were detected by the polymerase chain reaction (PCR) method.
Results: Seventy-two (72) isolates were collected from a different clinical specimen. Gentamicin-resistant strains (43%) had the highest frequency, and aztreonam-resistant strains (12.5%) had the lowest frequency. Also, the distribution of AmpC and MBL producing isolates were 27.7% and 35%, respectively. Moreover, the frequencies of , , , , , , , and genes were as follows: 12.5%, 15.2%, 11.1%, 15.2%, 19.4%, 16.6%, 23.6%, and 6.9%. Further, a strong correlation was observed between the abundance of -lactamase-producing strains and IUS genes.
Conclusions: Based on our knowledge from this study, the association between -lactamase production and IUS genes in plays an essential role in the emergence of drug-resistant strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990553 | PMC |
http://dx.doi.org/10.1155/2021/5565537 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Laboratory of Molecular Microbiology (Micromol), Institute of Biomedical Sciences, Universidade Federal de Uberlndia, Uberlndia, Minas Gerais, Brazil.
In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.
View Article and Find Full Text PDFPathogens
January 2025
MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa.
The challenges of antimicrobial resistance (AMR) to human health have pushed for the discovery of a new antibiotics agent from natural products. Cyanobacteria are oxygen-producing photosynthetic prokaryotes found in a variety of water habitats. Secondary metabolites are produced by cyanobacteria to survive extreme environmental stress factors, including microbial competition.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina 86057-970, Brazil.
The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!