"Omepralith": A novel simulation model for training in sialoendoscopy.

Acta Otorrinolaringol Esp (Engl Ed)

Servicio de Otorrinolaringología-Cirugía de Cabeza y Cuello, Hospital Universitario Donostia, Donostia, Gipuzkoa, España.

Published: April 2021

Introduction: There are no previously described training models for learning or teaching how to remove lithiasis from the salivary ducts. Therefore, we present a new simulation model to enable us to faithfully represent the process of endoscopic lithiasis extraction by sialoendoscopy.

Materials And Methods: A simulation model was developed using a pig's head, omeprazole spheres were used to simulate lithiasis in the various ducts of each salivary gland and a Dormia basket was used to train in extraction of the lithiasis model.

Results: Twenty-seven residents in training and/or young specialists were successfully trained in this technique using this model. Twenty-six (96.3%) considered the model useful for training in the use of baskets; all of them were able to capture the omeprazole sphere in the salivary duct. A satisfaction rate of 92.25 out of 100 points was obtained through an anonymous survey.

Conclusion: We describe a novel simulation model using omeprazole spheres, which allows the surgeon to practice how to diagnose and treat obstructive pathology of the salivary glands in a risk-free environment guaranteeing the reproducibility of the technique in conditions similar to those of normal practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.otorri.2020.11.005DOI Listing

Publication Analysis

Top Keywords

simulation model
16
novel simulation
8
model training
8
omeprazole spheres
8
model
6
"omepralith" novel
4
simulation
4
training
4
training sialoendoscopy
4
sialoendoscopy introduction
4

Similar Publications

Fully Synthetic Data for Complex Surveys.

Surv Methodol

December 2024

Department of Statistical Science, 214a Old Chemistry Building, Duke University, Durham, NC 27708-0251.

When seeking to release public use files for confidential data, statistical agencies can generate fully synthetic data. We propose an approach for making fully synthetic data from surveys collected with complex sampling designs. Our approach adheres to the general strategy proposed by Rubin (1993).

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Pumps in Water Distribution Networks (WDNs) adequately provide effective pressure where low elevation or high head losses are detected within the system. One of the most effective strategies to ensure economic sustainability is Pump Scheduling (PS), assuring the optimization of pump management and enabling significant energy cost saving. Meta-heuristic algorithms can be applied to Pump Scheduling, given their ability to provide reliable global solutions, further complemented by limited computational efforts.

View Article and Find Full Text PDF

Cardiorespiratory-gated cardiac proton radiotherapy using a novel ultrasound guidance system.

Clin Transl Radiat Oncol

March 2025

Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA.

Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field.

View Article and Find Full Text PDF

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!