Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mayocp.2021.01.022 | DOI Listing |
Microbiome
December 2024
Department of Food Biosciences, Teagasc Food Research Centre, Teagasc-The Irish Agriculture and Food Development Authority, Moorepark, Fermoy, Co., Cork, P61 C996, Ireland.
Background: Numerous studies have highlighted the impact of bacterial communities on the quality and safety of raw ewe milk-derived cheeses. Despite reported differences in the microbiota among cheese types and even producers, to the best of our knowledge, no study has comprehensively assessed all potential microbial sources and their contributions to any raw ewe milk-derived cheese, which could suppose great potential for benefits from research in this area. Here, using the Protected Designation of Origin Idiazabal cheese as an example, the impact of the environment and practices of artisanal dairies (including herd feed, teat skin, dairy surfaces, and ingredients) on the microbiomes of the associated raw milk, whey, and derived cheeses was examined through shotgun metagenomic sequencing.
View Article and Find Full Text PDFPol J Microbiol
December 2024
University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina.
Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Center of Natural Sciences and Technology., University of Pará State (UEPA), av. Eneas, 2626, Belém, Pará, Brazil.
The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas str. 30, Babtai Kaunas reg., 54333, Lithuania.
Background: In vitro cultivation and cryopreservation techniques are essential tools for genetic diversity conservation and pathogen-free plant propagation of horticultural crops. The optimisation of cryopreservation protocols typically focuses on minimising the negative effects of pretreatment with cryoprotectors (CPs), cryogenic freezing (CF) treatment, and recovery procedures on explants. However, the impact of in vitro and CF techniques on plant-associated microbiota remains poorly understood, and their potential to improve plant adaptation after cryopreservation is underexplored.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain. Electronic address:
The origin of ochratoxin A (OTA) in cheeses is mainly due to mould growth during the ripening process, and to a lesser extent, to the use of OTA-contaminated milk in cheese production. Bacterial smear-ripened cheeses developed a smear microbiota on their rind during ripening that greatly contributes to its typical aroma and texture. Bacteria from the Brevibacterium genus belong to the typical smear microbiota of cheeses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!