Bivalves are a diverse mollusc group of economic and ecological importance. An evident resilience to pollution, parasites and extreme environments makes some bivalve species important models for studying adaptation and immunity. Despite substantial progress in sequencing projects of bivalves, information on non-coding genes and gene-regulatory aspects is still lacking. Here, we review the current repertoire of bivalve microRNAs (miRNAs), important regulators of gene expression in Metazoa. We exploited available short non-coding RNA (sncRNA) data for and , and we produced new sncRNA data for two additional bivalves, the Mediterranean mussel and the blood clam . We found substantial heterogeneity and incorrect annotations of miRNAs; hence, we reannotated conserved miRNA families using recently established criteria for microRNA annotation. We found 106 miRNA families missing in the previously published bivalve datasets and 89 and 87 miRNA complements were identified in the two additional species. The overall results provide a homogeneous and evolutionarily consistent picture of miRNAs in bivalves and enable future comparative studies. The identification of two bivalve-specific miRNA families sheds further light on the complexity of transcription and its regulation in bivalve molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059956 | PMC |
http://dx.doi.org/10.1098/rstb.2020.0165 | DOI Listing |
Sci Adv
January 2025
Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea.
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1 EVs from human sera were unequivocally determined to be of cerebral origin.
View Article and Find Full Text PDFMol Cancer
December 2024
Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF).
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Cancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!