A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct phylogeographic patterns in populations of two oribatid mite species from the genus Pantelozetes (Acari, Oribatida, Thyrisomidae) in Central Europe. | LitMetric

AI Article Synopsis

  • Oribatid mites play a crucial role as decomposers in soils worldwide and have existed for at least 380 million years, with their migration influenced by past climatic changes.
  • The study focuses on the genetic diversity and evolutionary history of two different oribatid mite species: Pantelozetes cavaticus, found in Central European caves, and Pantelozetes paolii, widely distributed across various habitats.
  • Using molecular markers, researchers found distinct genetic lineages and minimal variability in one species, while the other exhibited long-distance population connections, highlighting the complex evolutionary patterns of these mites.

Article Abstract

Oribatid mites are important decomposers of dead organic matter in soils across the world. Their origin dates back at least 380 Mya. Multiple severe climatic changes during Late Pliocene and Pleistocene shaped the migration patterns of these organisms and should be reflected in the genetic variability of their current populations. In this study, we examined the genetic diversity and phylogeographic structure as well as the evolutionary history of populations of two ecologically different oribatid mite species. Pantelozetes cavaticus is a troglophile oribatid mite known mainly from Central European caves, whereas Pantelozetes paolii is a common surface eurytopic species with Holarctic distribution. We used two molecular markers-mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear D3 region of the 28S rDNA gene-to reveal phylogenetic relationships between contemporary populations. Whereas the D3 region showed minimal or no variability within populations, COI appeared to be a relevant marker for population studies. Phylogeographic analysis based on COI detected two lineages of P. cavaticus ('Czech' and 'Slovak'), which separated during the Late Pliocene (2.9 Mya) and revealed the existence of one new species. In contrast, three identified genetic lineages of P. paolii (radiation time 2.9 and 1.2 Mya, respectively) uncovered in this study were found to coexist in the distant sampling localities, suggesting a connection between populations even over long distances.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10493-021-00605-7DOI Listing

Publication Analysis

Top Keywords

oribatid mite
12
mite species
8
late pliocene
8
populations
6
distinct phylogeographic
4
phylogeographic patterns
4
patterns populations
4
oribatid
4
populations oribatid
4
species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!