Study Design: A retrospective cohort study.

Objective: This study aims to assess the potential value of very early trauma variables such as Abbreviated Injury Scale (AIS) and the Injury Severity Score for predicting independent ambulation following a traumatic spinal cord injury (TSCI).

Summary Of Background Data: Several models for prediction of ambulation early after TSCI have been published and validated. The vast majority rely on the initial examination of American Spinal Injury Association (ASIA) impairment scale and level of injury; however, in many locations and clinical situations this examination is not feasible early after the injury.

Methods: Patient characteristics, trauma data, and ASIA scores on admission to rehabilitation were collected for each of the 144 individuals in the study. Outcome measure was the indoor mobility item of the Spinal Cord Independence Measure taken upon discharge from rehabilitation. Univariate and multivariable models were created for each predictor, Odds ratios (ORs) were obtained by a multivariable logistic regression analysis, and area under the receiver operator curve was calculated for each model.

Results: We observed a significant correlation between the trauma variables and independent ambulation upon discharge from rehabilitation. Of the early variables, the AIS for the spine region showed the strongest correlation.

Conclusion: These findings support using preliminary trauma variables for early prognostication of ambulation following a TSCI, allowing for tailored individual interventions.Level of Evidence: 3.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000004053DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
trauma variables
12
early trauma
8
cord injury
8
independent ambulation
8
discharge rehabilitation
8
early
6
injury
6
trauma predictors
4
predictors mobility
4

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.

Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).

View Article and Find Full Text PDF

The Sir Ludwig Guttmann lecture 2023: psychosocial factors and adjustment dynamics after spinal cord injury.

Spinal Cord

January 2025

Rehabilitation Studies, Faculty of Medicine and Health, The University of Sydney, The Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.

Study Design: Narrative review OBJECTIVES: Sir Ludwig Guttmann realised spinal cord injury (SCI) rehabilitation should incorporate more than a biomedical approach if SCI patients were to adjust to their injury and achieve productive social re-integration. He introduced components into rehabilitation he believed would assist his patients build physical strength as well as psychological resilience that would help them re-engage with their communities. We pay tribute to Sir Ludwig by presenting research that has focussed on psychosocial factors that contribute to adjustment dynamics after SCI.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!