Background/aim: Peroxiredoxin V (Prx V) plays crucial roles in cellular apoptosis and proliferation in various cancer cells by regulating the cellular reactive oxygen species (ROS) levels.

Materials And Methods: Here, we examined the possible regulatory effects of Prx V on doxorubicin (DOX)-induced cellular apoptosis and its mechanisms in the human gastric adenocarcinoma cell line (AGS cells).

Results: Our findings suggest that Prx V knockdown may significantly increase the DOX-induced apoptosis by aggravating intracellular ROS accumulation. We also found that DOX-induced mitochondrial ROS levels and membrane permeability were significantly higher in short hairpin Prx V cells than in mock cells, and these phenomena were dramatically reversed by ROS scavenger treatment. Prx V knockdown also significantly upregulated the cleaved caspase 9, 3, and B-cell lymphoma 2 (Bcl2)-associated agonist of cell death/Bcl2 protein expression levels, suggesting that Prx V knockdown activates mitochondria-dependent apoptotic signaling pathways.

Conclusion: Taken together, this study suggests that Prx V may be a strong molecular target for gastric cancer (GC) chemotherapy, and further elucidates the role of Prx V in oxidative stress-induced cell apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.14949DOI Listing

Publication Analysis

Top Keywords

prx knockdown
12
cell apoptosis
8
gastric cancer
8
cancer cells
8
prx
8
cellular apoptosis
8
apoptosis
5
peroxiredoxin silencing
4
silencing elevates
4
elevates susceptibility
4

Similar Publications

Excess of selenium (Se) in aquatic ecosystems has necessitated thorough investigations into the effects/consequences of this metalloid on the autochthonous organisms exposed to it. The molecular details of Se-mediated adaptive response remain unknown in cyanobacteria. This study aims to uncover the molecular mechanisms driving the divergent physiological responses of cyanobacteria on exposure to selenate [Se(VI)] or selenite [Se(IV)], the two major water-soluble oxyanions of Se.

View Article and Find Full Text PDF

Psoriasis is a chronic, systemic immune-mediated disease caused by abnormal proliferation, decreased apoptosis, and over-differentiation of keratinocytes. The psoriatic skin lesions due to abnormal keratinocytes are closely associated with ROS produced by inflammatory cells. Peroxiredoxin II (Prx II) is an efficient antioxidant enzyme, which were highly expressed in skin tissues of psoriasis patient.

View Article and Find Full Text PDF

Peroxiredoxin 1 of Procambarus clarkii govern immune responses during pathogen infection.

Fish Shellfish Immunol

July 2023

School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China. Electronic address:

Members of the peroxiredoxin family are involved in a wide variety of physiological processes, including the ability to combat the effects of oxidative stress and immune responses, among others. Here, we cloned the cDNA of Procambarus clarkii Peroxiredoxin 1 (designated as PcPrx-1) and investigated its biological role in immune system functions in relation to microbial pathogens. The PcPrx-1 cDNA had 744 base pairs in an open reading frame that encoded 247 amino acid residues and contained a PRX_Typ2cys domain.

View Article and Find Full Text PDF

Molecular cloning and functional characterization of peroxiredoxin 4 (prx 4) in freshwater crayfish, Procambarus clarkii.

Fish Shellfish Immunol

June 2023

School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China. Electronic address:

Peroxiredoxin (Prx), which is a newly discovered member of the antioxidant protein family, performs important biological functions in intracellular signal transduction. In the present study, a peroxiredoxin 4 gene was cloned from crayfish for the first time and named Pc-prx 4. According to the amino acid sequence signature, Pc-Prx 4 was identified as the typical 2-Cys Prx molecule, which possessed two conserved cysteines (Cys98 and Cys219).

View Article and Find Full Text PDF

In a striking similarity to plant chloroplasts, the cyanobacterium Anabaena displays very low catalase activity, but expresses several peroxiredoxins (Prxs), including the typical 2-Cys-Prx (annotated as Alr4641), that detoxify H O . Due to the presence of multiple Prxs, the precise contribution of Alr4641 to the oxidative stress response of Anabaena is not well-defined. To unambiguously assess its in vivo function, the Alr4641 protein was knocked down using the CRISPRi approach in Anabaena PCC 7120.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!