The fluorescence signals emitted by chlorophyll molecules of plants is a promising non-destructive indicator of plant physiology due to its close link to photosynthesis. In this work, a deep photophysical study of chlorophyll fluorescence was provided, to assess the sub-optimal illumination effects on three plant species: L. sativa, A. hybridus and S. dendroideum. In all the cases, low light (LL) treatment induced an increase in pigment content. Fluorescence ratios - corrected by light reabsorption processes - remained constant, which suggested that photosystems stoichiometry was conserved. For all species and treatments, quantum yields of photophysical decay remained around 0.2, which meant that the maximum possible photosynthesis efficiency was about 0.8. L. sativa (C3) acclimated to low light illumination, displayed a strong increase in the LHC size and a net decrease in the photosynthetic efficiency. A. hybridus (C4) was not appreciably stressed by the low light availability whereas S. dendroideum (CAM), decreased its antenna and augmented the quantum yield of primary photochemistry. A novel approach to describe NPQ relaxation kinetics was also presented here and used to calculate typical deactivation times and amplitudes for NPQ components. LL acclimated L. sativa presented a much larger deactivation time for its state-transition-related quenching than the other species. Comprehensive fluorescence analysis allowed a deep study of the changes in the light-dependent reactions of photosynthesis upon low light illumination treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2021.112182 | DOI Listing |
Purpose: This report details the recommendations of a Nursing Best Practice Working Group, which aims to advance best practice in the use of 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) in patients with high-grade glioma (HGG).
Design: Quality Improvement Project.
Methods: These recommendations were gathered during a meeting of a Nursing Best Practice Working Group comprising expert nurses and practice administrators from five US centers of excellence in the management of HGG.
Inorg Chem
January 2025
Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.
A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Duke University Hospital, 2301 Erwin Rd, Box 3808, Durham, NC 27701 (B.W.T., K.R.K., B.C.A., S.P.T., D.E.K., B.H., M.R.B., D.M., E.S., E.A.); Department of Biostatistics and Bioinformatics (N.F., S.M., A.E.) and Department of Medical Physics (W.P.S., E.S., E.A.), Duke University, Durham, NC.
Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!