Profiling of exosomal microRNA (exo-miRNA) is very important for cancer diagnosis and treatment. However, rapid and sensitive determination the trace of exo-miRNA in clinical samples has not been developed. Herein, a robust electrochemical biosensor was proposed using multifunctional DNA tetrahedrons assisted catalytic hairpin assembly (MDTs-CHA) for exo-miRNA analysis. The MDTs-CHA, contained two multifunctional tetrahedrons (T1 and T2), leverage localized reaction and cascade amplification to enable rapid and ultrasensitive exo-miRNA analysis. Employing the MDTs-CHA, the electrochemical platform allowed quantitative measurement of exo-miRNA down to 7.2 aM in 30 min with good specificity. Furthermore, by profiling four tumor-associated exo-miRNAs (miR-1246, miR-221, miR-375, and miR-21) in a breast cancer cohort, this platform showed high efficiency (AUC: 0.989) and high sensitivity of 90.5% for breast tumors diagnoses, with 80% sensitivity for early diagnoses (stage I-IIa). Therefore, this platform has great potential in bioanalysis and clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!