Leveraging data and new digital tools to prepare for the next pandemic.

Lancet

The Trinity Challenge, Cambridge CB2 1TQ, UK. Electronic address:

Published: April 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9752208PMC
http://dx.doi.org/10.1016/S0140-6736(21)00680-2DOI Listing

Publication Analysis

Top Keywords

leveraging data
4
data digital
4
digital tools
4
tools prepare
4
prepare pandemic
4
leveraging
1
digital
1
tools
1
prepare
1
pandemic
1

Similar Publications

Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed.

View Article and Find Full Text PDF

The randomness and volatility of existing clean energy sources have increased the complexity of grid scheduling. To address this issue, this work proposes an artificial intelligence (AI) empowered method based on the Environmental, Social, and Governance (ESG) big data platform, focusing on multi-objective scheduling optimization for clean energy. This work employs a combination of Particle Swarm Optimization (PSO) and Deep Q-Network (DQN) to enhance grid scheduling efficiency and clean energy utilization.

View Article and Find Full Text PDF

Pediatric diabetes I is an endemic and an especially difficult disease; indeed, at this point, there does not exist a cure, but only careful management that relies on anticipating hypoglycemia. The changing physiology of children producing unique blood glucose signatures, coupled with inconsistent activities, e.g.

View Article and Find Full Text PDF

An improved practical Byzantine fault tolerance algorithm for aggregating node preferences.

Sci Rep

December 2024

School of Information Engineering, Yangzhou University, Yangzhou, Jiangsu, China.

Consensus algorithms play a critical role in maintaining the consistency of blockchain data, directly affecting the system's security and stability, and are used to determine the binary consensus of whether proposals are correct. With the development of blockchain-related technologies, social choice issues such as Bitcoin scaling and main chain forks, as well as the proliferation of decentralized autonomous organization (DAO) applications based on blockchain technology, require consensus algorithms to reach consensus on a specific proposal among multiple proposals based on node preferences, thereby addressing the multi-value consensus problem. However, existing consensus algorithms, including Practical Byzantine Fault Tolerance (PBFT), do not support nodes expressing preferences.

View Article and Find Full Text PDF

Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!