Central Asia (CA) is a core area of global desertification, but the effect of the intensifying "global greening" policy on the desertification process under global warming scenarios in CA remains unclear. Based on multi-source remote sensing data and Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 2b climate data, this study investigated desertification in CA using actual evapotranspiration (ETa), temperature and precipitation as driving factors. Coupling with the CA-Markov model, the inversion method of desertification was improved, and the evolution normal form of desertification in CA was proposed. Finally, spatio-temporal variations of desertification in CA were quantified. The results indicate that temperature, precipitation, and normalized difference vegetation index (NDVI) in CA increased during the historical period (1980-2015), with sudden changes in 1994. In contrast, although ETa exhibited fluctuating increases (7.41 mm/10 yr) during this period, no sudden changes were observed in 1994. In the future (2006-2099), the climate of CA will become warmer and wetter. With reference to 1980-2005, precipitation under global warming of 2.0 °C (GW2.0) will be higher than that under global warming of 1.5 °C (GW1.5) by 10.3 mm, and ETa will increase by 20.88 mm and 27.54 mm under GW1.5 and GW2.0, respectively. Although the area of desert lands has decreased (5.94 × 10 km/10 yr), the area of potential desert lands has increased (0.17 × 10 km/10 yr). With global warming, this situation will continue to intensify, mainly in Xinjiang of China, and Kazakhstan. The Aral Sea plays an important role in the desertification of CA. The potential increase in desert land under GW2.0 is equivalent to the current water area of the Aral Sea. The findings could provide policy support for combating desertification in CA and promoting the achievement of the Sustainable Development Goals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!