DAPT (N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester) is a γ-secretase inhibitor that indirectly blocks the activity of Notch pathway. It is a potential therapeutic target drug for many diseases, such as cancer, neurological, cardiovascular, and cerebrovascular diseases. However, the pharmacological action and specific mechanisms of DAPT are not clear. Planarians have strong regenerative capacity and can regenerate a new individual with a complete nervous system in one week. Thus, they are used as an ideal indicator of environmental toxicants and a novel model for studying neurodevelopmental toxicology. In this study, different concentrations and treatment times of DAPT are used to analyze the gene expression levels of major components in Notch pathway. The results show that the optimal concentration and exposure time of DAPT is 100 nM for 10 days in planarians and indicate that the inhibitory of DAPT treatment on Notch pathway is time- and concentration-dependent. The potential impact of DAPT is effectively analyzed by qPCR, WISH, and Immunofluorescence. The results indicate that DAPT exposure causes intact planarian wavy or swollen, and regenerative planarians asymmetric growth or muti-eye. Moreover, DAPT exposure increases cell proliferation and apoptosis, results in neurodevelopmental defects and dynamic changes of some marker genes. These results suggest that the balance of proliferation and apoptosis is disturbed, and then, affecting tissue homeostasis and differentiation. These findings demonstrate that DAPT has serious side effects in organisms and relies on Notch pathway to determine cell fate, it is cautious in the use of DAPT as a potential therapeutic approach for the disease in clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146735 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of ENT, Medical University, 1000 Sofia, Bulgaria.
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
Mucosal immunity plays a critical role in the pathogenesis of inflammatory immune diseases. This study leverages single-cell RNA sequencing, spatial transcriptomics, and spatial proteomics to compare the cellular mechanisms involved in periodontitis between humans and mice, aiming to develop precise strategies to protect the gingival mucosal barrier. We identified key conserved and divergent features in cellular landscapes and transcriptional profiles across the two species, underscoring the complexity of inflammatory responses and immune dynamics in periodontitis.
View Article and Find Full Text PDFCells
December 2024
Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden.
The human heart regenerates slowly through life, but how new cells are generated is mostly unknown. The atrioventricular junction (AVj) has been indicated as a potential stem cell niche region. Little is known about the protein composition of the human AVj.
View Article and Find Full Text PDFBiomedicines
December 2024
Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania.
The placenta is a vital organ that supports fetal development by mediating nutrient and gas exchange, regulating immune tolerance, and maintaining hormonal balance. Its formation and function are tightly linked to the processes of embryo implantation and the establishment of a robust placental-uterine interface. Recent advances in molecular biology and histopathology have shed light on the key regulatory factors governing these processes, including trophoblast invasion, spiral artery remodeling, and the development of chorionic villi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!