Mechanobiology-informed regenerative medicine: Dose-controlled release of placental growth factor from a functionalized collagen-based scaffold promotes angiogenesis and accelerates bone defect healing.

J Control Release

Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Published: June 2021

Leveraging the differential response of genes to mechanical loading may allow for the identification of novel therapeutics and we have recently established placental growth factor (PGF) as a mechanically augmented gene which promotes angiogenesis at higher doses and osteogenesis at lower doses. Herein, we sought to execute a mechanobiology-informed approach to regenerative medicine by designing a functionalized scaffold for the dose-controlled delivery of PGF which we hypothesized would be capable of promoting regeneration of critically-sized bone defects. Alginate microparticles and collagen/hydroxyapatite scaffolds were shown to be effective PGF-delivery platforms, as demonstrated by their capacity to promote angiogenesis in vitro. A PGF release profile consisting of an initial burst release to promote angiogenesis followed by a lower sustained release to promote osteogenesis was achieved by incorporating PGF-loaded microparticles into a collagen/hydroxyapatite scaffold already containing directly incorporated PGF. Although this PGF-functionalized scaffold demonstrated only a modest increase in osteogenic capacity in vitro, robust bone regeneration was observed after implantation into rat calvarial defects, indicating that the dose-dependent effect of PGF can be harnessed as an alternative to multi-drug systems for the delivery of both pro-angiogenic and pro-osteogenic cues. This mechanobiology-informed approach provides a framework for strategies aimed at identifying and evaluating novel scaffold-based systems for regenerative applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2021.03.031DOI Listing

Publication Analysis

Top Keywords

regenerative medicine
8
placental growth
8
growth factor
8
promotes angiogenesis
8
mechanobiology-informed approach
8
microparticles collagen/hydroxyapatite
8
promote angiogenesis
8
release promote
8
pgf
5
mechanobiology-informed regenerative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!