A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential role of melatonin in healthy brain aging: a systematic review and meta-analysis of the SAMP8 model. | LitMetric

The relationship between oxidative stress (OS) and cellular senescence (CS) is an important research topic because of the rapidly aging global population. Melatonin (MT) is associated with aging and plays a pivotal role in redox homeostasis, but its role in maintaining physiological stability in the brain (especially in OS-induced senescence) remains elusive. Here, we systematically reviewed the differential role of MT on OS-induced senescence in the SAMP8 mouse model. Major electronic databases were searched for relevant studies. Pooled mean differences (MDs)/standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to estimate the effect size. Overall, 10 studies met the inclusion criteria. MT treatment was associated with the reduction of lipid peroxidation (SMD = -2.00, 95% CI [-2.91, -1.10]; < 0.0001) and carbonylated protein (MD = -5.74, 95% CI [-11.03, -0.44]; = 0.03), and with enhancement of the reduced-glutathione/oxidized-glutathione ratio (MD = 1.12, 95% CI [0.77, 1.47]; < 0.00001). No differences were found in catalase and superoxide dismutase activities between MT-treated and vehicle-treated groups. Furthermore, nuclear-factor-κB, cyclin-dependent kinase-5, and p53 were regulated by MT administration. MT may improve physiological stability during aging by regulating interactions in brain senescence, but acts differentially on the antioxidant system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064193PMC
http://dx.doi.org/10.18632/aging.202894DOI Listing

Publication Analysis

Top Keywords

differential role
8
physiological stability
8
os-induced senescence
8
role melatonin
4
melatonin healthy
4
healthy brain
4
aging
4
brain aging
4
aging systematic
4
systematic review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!