Multi-system neurological disorder associated with a CRYAB variant.

Neurogenetics

Department of Neurology, Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem, Israel.

Published: May 2021

We report a multiplex family with extended multisystem neurological phenotype associated with a CRYAB variant. Two affected siblings were evaluated with whole exome sequencing, muscle biopsy, laser microdissection, and mass spectrometry-based proteomic analysis. Both patients and their mother manifested a combination of early-onset cataracts, cardiomyopathy, cerebellar ataxia, optic atrophy, cognitive impairment, and myopathy. Whole exome sequencing identified a heterozygous c.458C>T variant mapped to the C-terminal extension domain of the Alpha-crystallin B chain, disrupting its function as a molecular chaperone and its ability to suppress protein aggregation. In accordance with the molecular findings, muscle biopsies revealed subsarcolemmal deposits that appeared dark with H&E and trichrome staining were negative for the other routine histochemical staining and for amyloid with the Congo-red stain. Electron microscopy demonstrated that the deposits were composed of numerous parallel fibrils. Laser microdissection and mass spectrometry-based proteomic analysis revealed that the inclusions are almost exclusively composed of crystallized chaperones/heat shock proteins. Moreover,  a structural model suggests that Ser153 could be involved in monomer stabilization, dimer association, and possible binding of partner proteins. We propose that our report potentially expands the complex phenotypic spectrum of alpha B-crystallinopathies with possible effect of a CRYAB variant on the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-021-00640-xDOI Listing

Publication Analysis

Top Keywords

cryab variant
12
associated cryab
8
exome sequencing
8
laser microdissection
8
microdissection mass
8
mass spectrometry-based
8
spectrometry-based proteomic
8
proteomic analysis
8
multi-system neurological
4
neurological disorder
4

Similar Publications

αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration.

View Article and Find Full Text PDF

Generation of human induced pluripotent stem cell (hiPSC) lines derived from three patients carrying the pathogenic CRYAB (A527G) mutation and one non-carrier family member.

Stem Cell Res

October 2024

Amsterdam Cardiovascular Sciences, Department of Physiology, VU University, Amsterdam University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands. Electronic address:

A newly identified pathogenic variant (A527G) in alpha B-crystallin (αB-crystallin) has been linked to congenital cataract and young-onset dilated cardiomyopathy (DCM) within a Dutch family, although the disease mechanism remains unclear. Four human induced pluripotent stem cell (hiPSC) clones were generated from three symptomatic patients carrying the A527G variant, and one healthy proband. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai viral pluripotency vectors.

View Article and Find Full Text PDF

Missense mutations in the alpha-B crystallin gene (CRYAB) have been reported in desmin-related myopathies with or without cardiomyopathy and have also been reported in families with only a cataract phenotype. Dilated cardiomyopathy (DCM) is a disorder with a highly heterogeneous genetic etiology involving more than 60 causative genes, hindering genetic diagnosis. In this study, we performed whole genome sequencing on 159 unrelated patients with DCM and identified an unusual stop-loss pathogenic variant in NM_001289808.

View Article and Find Full Text PDF

Background: Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 variants (P63A, P380S) led to worse prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!